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ABSTRACT

We study the problem of quantization of discrete prob-
ability distributions, arising in universal coding, as well
as other applications. We show, that in many situations
this problem can be reduced to the covering problem for
the unit simplex. Such setting yields precise asymptotic
characterization in the high-rate regime. Our main contri-
bution is a simple and asymptotically optimal algorithm
for solving this problem. Performance of this algorithm is
studied and compared with several known solutions.

1. INTRODUCTION

The problem of coding of probability distributions sur-
faces many times in the history of source coding. First
universal codes, developed in late 1960s, such as Lynch-
Davisson [21, 9], combinatorial [28], and enumerative
codes [7] used lossless encoding of frequencies of sym-
bols in an input sequence. The Rice machine [24], de-
veloped in early 1970’s, transmitted quantized estimate
of variance of source’s distribution. Two-step universal
codes, developed by J. Rissanen in 1980s, explicitly esti-
mate, quantize, and transmit parameters of distribution as
a first step of the encoding process [25, 26]. Vector quanti-
zation techniques for two-step universal coding were pro-
posed in [30, 4]. In practice, two-step coding was often
implemented by constructing a Huffman tree, then encod-
ing and transmitting this code tree, and then encoding and
transmitting the data. Such algorithms become very popu-
lar in 1980s and 1990s, and were used, for example, in ZIP
archiver [17], and JPEG image compression standard [16].

In recent years, the problem of coding of distributions
has attracted a new wave of interest coming from other
fields. For example, in computer vision, it is now custom-
ary to use histogram-derived descriptions of image fea-
tures. Examples of such descriptors include SIFT [20],
SURF [1], and CHoG [2], differentiating mainly in a way
the quantize histograms. Several other uses of coding of
distributions are described in [11].

To the best of our knowledge, most related prior stud-
ies were motivated by optimal design of universal source
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codes [25], [26], [30], [4], [15]. In this context, quan-
tization of distributions becomes a small sub-problem in
a complex rate optimization process, and final solutions
yield very few insights about it.

In this paper, we study quantization of distributions as
a stand-alone problem. In Section 2, we introduce nota-
tion and formulate the problem. In Section 3, we study
achievable performance limits. In Section 4, we propose
and study an algorithm for solving this problem. In Sec-
tion 5, we provide comparisons with other known tech-
niques. Conclusions are drawn in Section 6.

2. DESCRIPTION OF THE PROBLEM

Let A = {r1, . . . , rm}, m < ∞, denote a discrete set of
events, and let Ωm denote the set of probability distribu-
tions over A:

Ωm =
{
[ω1, . . . , ωm] ∈ Rm

∣∣∣ωi > 0 ,
∑

i ωi = 1
}
. (1)

Let p ∈ Ωm be an input distribution that we need to en-
code, and let Q ⊂ Ωm be a set of distributions that we
will be able to reproduce. We will call elements of Q
reconstruction points or centers in Ωm. We will further
assume that Q is finite |Q| < ∞, and that its elements are
enumerated and encoded by using fixed-rate code. The
rate of such code is R(Q) = log2 |Q| bits. By d (p, q)
we will denote a distance measure between distributions
p, q ∈ Ωm.

In order to complete traditional setting of the quan-
tization problem for distribution p ∈ Ωm, it remains to
assume that it is produced by some random process, e.g.
a memoryless process with density θ over Ωm. Then the
problem of quantization can be formulated as minimiza-
tion of the average distance to the nearest reconstruction
point (cf. [14, Lemma 3.1])

d̄(Ωm, θ, R) = inf
Q⊂Ωm

|Q|62R

Ep∈Ωm
p∼θ

min
q∈Q

d(p, q) , (2)

However, we notice that in most applications, best pos-
sible accuracy of the reconstructed distribution is needed
instantaneously. For example, in the design of a two-part
universal code, sample-derived distribution is quantized
and immediately used for encoding of this sample [26].
Similarly, in computer vision / image recognition appli-
cations, histograms of gradients from an image are ex-



tracted, quantized, and used right away to find nearest
match for this image.

In all such cases, instead of minimizing the expected
distance, it makes more sense to design a quantizer that
minimizes the worst case- or maximal distance to the near-
est reconstruction point. In other words, we need to solve
the following problem 2

d∗(Ωm, R) = inf
Q⊂Ωm

|Q|62R

max
p∈Ωm

min
q∈Q

d(p, q) . (3)

We next survey some known results about it.

3. ACHIEVABLE PERFORMANCE LIMITS

We note that the problem (3) is purely geometric in nature.
It is equivalent to the problem of covering of Ωm with at
most 2R balls of equal radius. Related and immediately
applicable results can be found in Graf and Luschgy [14,
Chapter 10].

First, observe that Ωm is a compact set in Rm−1 (unit
m−1-simplex), and that its volume in Rm−1 can be com-
puted as follows [29]:

λm−1(Ωm) =
ak

k!

√
k + 1

2k

∣∣∣∣∣k=m−1
a=

√
2

=

√
m

(m− 1)!
. (4)

Here and below we assume that m > 3.
Next, we bring result for asymptotic covering radius

[14, Theorem 10.7]

lim
R→∞

2
R

m−1 d∗(Ωm, R) = Cm−1
m−1
√
λm−1(Ωm), (5)

where Cm−1 > 0 is a constant known as covering coeffi-
cient for the unit cube

Cm−1 = inf
R>0

2
R

m−1 d∗([0, 1]m−1, R). (6)

The exact value of Cm−1 depends on a distance mea-
sure d(p, q). For example, for L∞ norm

d∞(p, q) = ||p− q||∞ = max
i

|pi − qi| ,

it is known that
Cm−1,∞ = 1

2 .

Hereafter, when we work with specific Lr - norms:

dr(p, q) = ||p− q||r =

(∑
i

|pi − qi|r
)1/r

(7)

we will attach subscripts r to covering radius d∗(.) and
other expressions to indicate type of norm being used.

By putting all these facts together, we obtain:

2The dual problem

R(ε) = inf
Q⊂Ωm:maxp∈Ωm minq∈Q d(p,q)6ε

log2 |Q| ,

may also be posed. The resulting quantity R(ε) can be understood as
Kolmogorov’s ε-entropy for metric space (Ωm, d) [18].

Figure 1. Examples of type lattices and their Voronoi cells
in 3 dimensions (m = 3, n = 1, 2, 3).

Proposition 1. With R → ∞:

d∗∞(Ωm, R) ∼ 1
2

m−1

√ √
m

(m−1)! 2
− R

m−1 (8)

and more generally (for other Lr-norms, r > 1):

d∗r(Ωm, R) ∼ Cm−1,r
m−1

√ √
m

(m−1)! 2
− R

m−1 , (9)

where Cm−1,r are some constants.

We further note, that with large m the leading term
in (9) turns into

m−1

√ √
m

(m−1)! =
e

m
+O

(
1

m2

)
(10)

which is a decaying function of m. This highlights an in-
teresting property and distinction of the problem of quan-
tization of m-ary distributions, compared to quantization
of the unit (m− 1)-dimensional cube.

Our next task is to design a practical algorithm for
solving this problem.

4. PRACTICAL ALGORITHM FOR CODING OF
DISTRIBUTIONS

4.1. Algorithm design

Our algorithm can be viewed as a custom designed lattice
quantizer. It is interesting in a sense that its lattice coin-
cides with the concept of types in universal coding [8].

4.1.1. Type Lattice

Given some integer n > 1, define a lattice:

Qn =
{
[q1, . . . , qm] ∈ Qm

∣∣∣qi = ki

n ,
∑

i ki = n
}
, (11)

where n, k1, . . . , km ∈ Z+. Parameter n serves as a com-
mon denominator to all fractions, and can be used to con-
trol the density and number of points in Qn.

By analogy with the concept of types in universal cod-
ing [8] we will refer to distributions q ∈ Qn as types.
For same reason we will call Qn a type lattice. Several
examples of type lattices are shown in Figure 1.

4.1.2. Quantization

The task of finding the nearest type in Qn can be solved
by using the following simple algorithm: 3:

3This algorithm is similar in concept to Conway and Sloane’s quan-
tizer for lattice An [5, Chapter 20]. It works within (m-1) simplex.



Algorithm 1. Given p, n, find nearest q =
[
k1

n , . . . , km

n

]
:

1. Compute values (i = 1, . . . ,m)

k′i =
⌊
npi +

1
2

⌋
, n′ =

∑
i k

′
i .

2. If n′ = n the nearest type is given by: ki = k′i.
Otherwise, compute errors

δi = k′i − npi ,

and sort them such that

− 1
2 6 δj1 6 δj2 6 . . . 6 δjm 6 1

2 ,

3. Let ∆ = n′ − n. If ∆ > 0 then decrement d values
k′i with largest errors

kji =

[
k′ji j = i, . . . ,m−∆− 1 ,
k′ji − 1 i = m−∆, . . . ,m ,

otherwise, if ∆ < 0 increment |∆| values k′i with
smallest errors

kji =

[
k′ji + 1 i = 1, . . . , |∆| ,
k′ji i = |∆|+ 1, . . . ,m .

The logic of this algorithm is obvious. It finds points
that are nearest in terms of L-norms. By using quick-
select instead of full sorting in step 2, its run time can
be reduced to O(m).

4.1.3. Enumeration and Encoding

As mentioned earlier, the number of types in lattice Qn

depends on the parameter n. It is essentially the number
of partitions of n into m terms k1 + . . .+ km = n:

|Qn| =
(
n+m− 1

m− 1

)
. (12)

In order to encode a type with parameters k1, . . . , km,
we need to obtain its unique index ξ(k1, . . . , km). We sug-
gest to compute it as follows:

ξ(k1, . . . , kn) = (13)
n−2∑
j=1

kj−1∑
i=0

(
n− i−

∑j−1
l=1 kl +m− j − 1

m− j − 1

)
+ kn−1.

This formula follows by induction (starting with m =
2, 3, etc.), and it implements lexicographic enumeration
of types. For example:

ξ(0, 0, . . . , 0, n) = 0 ,

ξ(0, 0, . . . , 1, n− 1) = 1 ,

. . .

ξ(n, 0, . . . , 0, 0) =
(
n+m−1
m−1

)
− 1 .

Similar combinatorial enumeration techniques were dis-
cussed in [28, 7, 27]. With precomputed array of binomial
coefficients, the computation of an index by using this for-
mula requires only O(n) additions4.

Once index is computed, it is transmitted by using its
direct binary representation at rate:

R(n) =
⌈
log2

(
n+m−1
m−1

)⌉
. (14)

4Considering that log |Qn| = O(logn), this translates into at most
O(n logn) bit-additions

4.2. Analysis

Type lattice Qn is related to so-called lattice An in lattice
theory [5, Chapter 4]. It can be understood as a bounded
subset of An with n = m − 1 dimensions, which is sub-
sequently scaled, and placed in the unit simplex.

Using this analogy, we can show that vertices of Voronoi
cells (so called holes) in type lattice Qn are located at:

q∗i = q + vi, q ∈ Qn, i = 1, . . . ,m− 1, (15)

where vi are so-called glue vectors [5, Chapter 21]:

vi =
1
n

[
m−i
m , . . . , m−i

m︸ ︷︷ ︸
i times

, −i
m , . . . , −i

m︸ ︷︷ ︸
m−i times

]
. (16)

We next compute maximum distances (covering radii).

Proposition 2. Let a = ⌊m/2⌋. The following holds:

max
p∈Ωm

min
q∈Qn

d∞(p, q) = 1
n

(
1− 1

m

)
, (17)

max
p∈Ωm

min
q∈Qn

d2(p, q) = 1
n

√
a(m−a)

m , (18)

max
p∈Ωm

min
q∈Qn

d1(p, q) = 1
n

2a(m−a)
m . (19)

Proof. We use vectors (16). The largest component values
appear when i = 1 or i = m− 1. E.g. for i = 1:

v1 = 1
n

[
m−1
m , −1

m , . . . , −1
m

]
.

This produces L∞ - radius. The largest absolute sum
is achieved when all components are approximately the
same in magnitude. This happens when i = a:

va = 1
n

[
m−a
m , . . . , m−a

m︸ ︷︷ ︸
a times

, −a
m , . . . , −a

m︸ ︷︷ ︸
m−a times

]
.

This produces L1 - radius. L2 norm is the same for all
vectors vi, i > 0.

It remains to evaluate distance / rate characteristics of
type-lattice quantizer:

d∗r [Qn](Ωm, R) = min
n:|Qn|62R

max
p∈Ωm

min
q∈Qn

dr(p, q) .

We report the following.

Theorem 1. Let a = ⌊m/2⌋. Then, with R → ∞:

d∗∞[Qn](Ωm, R) ∼ 2−
R

m−1
1− 1

m
m−1
√

(m− 1)!
, (20)

d∗2[Qn](Ωm, R) ∼ 2−
R

m−1

√
a(m−a)

m

m−1
√

(m− 1)!
, (21)

d∗1[Qn](Ωm, R) ∼ 2−
R

m−1

2a(m−a)
m

m−1
√

(m− 1)!
. (22)



Proof. We first obtain asymptotic (with n → ∞) expan-
sion for the rate of our code (14):

R = (m− 1) log2 n− log2 (m− 1)! +O
(
1
n

)
.

This implies that

n ∼ 2
R

m−1 m−1
√
(m− 1)! .

Statements of theorem are obtained by combination of this
relation with expressions (17-19).

4.2.1. Optimality

We now compare the result of Theorem 1 with theoretical
asymptotic estimates for covering radius for Ωm (8, 9).
As evident, the maximum distance in our scheme decays
with the rate R as:

d∗[Qn](Ωm, R) ∼ 2−
R

m−1 ,

which matches the decay rate of theoretical estimates.
The only difference is in a constant factor. For exam-

ple, under L∞ norm, such factor in expression (8) is

1

2
m−1

√√
m =

1

2
+O

(
logm

m

)
.

Our algorithm, on the other hand, uses a factor

1

2
6 1− 1

m
< 1,

which starts with 1
2 when m = 2. This suggests that even

in terms of leading constant our algorithm is close to the
optimal.

4.2.2. Performance in terms of KL-distance

All previous results are obtained using L-norms. Such dis-
tance measures are common in computer vision applica-
tions [20, 22, 1]. In source coding, main interest presents
Kullback-Leibler (KL) distance:

dKL(p, q) = D(p||q) =
∑
i

pi log2
pi
qi

. (23)

It is not a true distance, so the exact analysis is compli-
cated. Yet, by using Pinsker inequality [23]

dKL(p, q) > 1
2 ln 2 d1(p, q)

2 , (24)

we can at least show that for deep holes

dKL(q
∗, q) > 1

2 ln 2

(
1
n

2a(m−a)
m

)2

.

By translating n to bitrate, we obtain

dKL(q
∗, q) & 1

2 ln 2 2−
2R

m−1

( 2a(m−a)
m

m−1
√
(m− 1)!

)2

. (25)

More precise bounds can be obtained by using inequalities
described in [10].

Figure 2. Two 10-point lattices: Q3 (left), and Q∗
2 (right).

The second has much smaller cells.

4.3. Additional improvements

4.3.1. Introducing bias

As easily observed, type lattice Qn places reconstruction
points with ki = 0 precisely on edges of the probability
simplex Ωm. This is not best placement from quantization
standpoint, particularly when n is small. This placement
can be improved by using biased types:

qi =
ki + β

n+ βm
, i = 1, . . . ,m ,

where β > 0 is a constant that defines shift towards the
middle of the simplex. In traditional source coding ap-
plications, it is customary to use β = 1/2 [19]. In our
case, setting β = 1/m appears to work best for L-norms,
as it introduces same distance to edges of the simplex as
covering radius of the lattice.

Algorithm 1 can be easily adjusted to find nearest points
in such modified lattice.

4.3.2. Using dual type lattice Q∗
n

Another idea for improving performance of our quantiza-
tion algorithm – is to define and use dual type lattice Q∗

n.
Such a lattice consists of all points:

q∗ = q + vi, q ∈ Qn, q∗ ∈ Ωm i = 0, . . . ,m− 1,

where vi are the glue vectors (16).
The main advantage of using dual lattice would be

thinner covering at high dimensions (cf. [5, Chapter 2]).
But even at small dimensions, it may sometimes be use-
ful. An example of this for m = 3 is shown in Figure. 2.

5. COMPARISON WITH OTHER TECHNIQUES

Given a probability distribution p ∈ Ωm, one popular in
practice way of compressing it is to design a prefix code
(for example, a Huffman code) for this distribution p first,
and then encode the binary tree of such a code. Below
we summarize some known results about performance of
such schemes.

5.1. Performance of tree-based quantizers

By denoting by ℓ1, . . . , ℓm lengths of prefix codes, recall-
ing that they satisfy Kraft inequality [6], and noting that
2−ℓi can be used to map lengths back to probabilities, we
arrive at the following set:

Qtree =
{
[q1, . . . , qm] ∈ Qm

∣∣qi = 2−ℓi ,
∑

i 2
−ℓi 6 1

}
.



Figure 3. Maximal L1 distances vs rate characteristics d∗1[H](R), d∗1[GM](R), d∗1[Qn](R) achievable by Huffman-,
Gilbert-Moore-, and type-based quantization schemes.

There are several specific algorithms that one can em-
ploy for construction of codes, producing different sub-
sets of Qtree. Below we only consider the use of classic
Huffman and Gilbert-Moore [13] codes. Some additional
tree-based quantization schemes can be found in [11].

Proposition 3. There exists a set QGM ⊂ Qtree, such that

d∗KL[QGM](RGM) 6 2 , (26)

d∗1[QGM](RGM) 6 2
√
ln 2 , (27)

d∗∞[QGM](RGM) 6 1 , (28)

where

RGM = log2 |QGM| = log2 Cm−1 (29)
= 2m− 3

2 log2 m+O(1),

where Cn = 1
n+1

(
2n
n

)
is the Catalan number.

Proof. We use Gilbert-Moore code [13]. Upper bound for
KL-distance is well known [13]. L1 bound follows by
Pinsker’s inequality (24). L∞ bound is obvious: pi, qi ∈
(0, 1). Gilbert-Moore code uses fixed assignment (e.g.
from left to right) of letters to the codewords. Any binary
rooted tree with m leaves can serve as a code. The number
of such trees is given by the Catalan number Cm−1.

Proposition 4. There exists a set QH ⊂ QH, such that

d∗KL[QH](RH) 6 1 , (30)

d∗1[QH)](RH) 6
√
2 ln 2 , (31)

d∗∞[QH](RH) 6 1
2 , (32)

where

RH = log2 |QH| = m log2 m+O (m) . (33)

Proof. We use Huffman code. Its KL-distance bound is
well known [6]. L1 bound follows by Pinsker’s inequal-
ity. L∞ bound follows from sibling property of Huffman
trees [12]. It remains to estimate the number of Huff-
man trees Tm with m leaves. Consider a skewed tree,
with leaves at depths 1, 2, . . . ,m − 1,m − 1. The last
two leaves can be labeled by

(
m
2

)
combinations of letters,

whereas the other leaves - by (m − 2)! possible combi-
nations. Hence Tm >

(
m
2

)
(m − 2)! = 1

2m!. Upper
bound is obtained by arbitrary labeling all binary trees
with m leaves: Tm < m!Cm−1, where Cm−1 is the
Catalan number. Combining both we obtain: − 1

ln 2m <
log2 Tm −m log2 m <

(
2− 1

ln 2

)
m.

5.2. Comparison

We present comparison of maximal L1 distances achiev-
able by tree-based and type-based quantization schemes
in Figure 3. We consider cases of m = 5 and m = 10
dimensions. It can be observed that the proposed type-
based scheme is more efficient and much more versatile,
allowing a wide range of possible rate/distance tradeoffs.

6. CONCLUSIONS

The problem of quantization of discrete probability distri-
butions is studied. It is shown, that in many cases, this
problem can be reduced to the covering radius problem
for the unit simplex. Precise characterization of this prob-
lem in high-rate regime is reported. A simple algorithm
for solving this problem is also presented, analyzed, and
compared to other known solutions.
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