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Abstract

A variable-to-fixed length encoder partitions the source string into variable-length phrases

that belong to a given and fixed dictionary. Tunstall, and independently Khodak, designed

variable-to-fixed length codes for memoryless sources that are optimal under certain con-

straints. In this paper, we study the Tunstall and Khodak codes using variety of techniques

ranging from stopping times for sums of independent random variables to Tauberian the-

orems and Mellin transform. After proposing an algebraic characterization of the Tunstall

and Khodak codes, we present new results on the variance and a central limit theorem

for dictionary phrase lengths. This analysis also provides a new argument for obtaining

asymptotic results about the mean dictionary phrase length and average redundancy rates.
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1 Introduction

A variable-to-fixed length encoder partitions the source string over an m-ary alphabet A into

a concatenation of variable-length phrases. Each phrase except the last one is constrained

to belong to a given dictionary D of source strings; the last phrase is a non-null prefix of a

dictionary entry. It is convenient to represent a uniquely parsable dictionary by a complete

parsing tree T , i.e., a tree in which every internal node has all m children nodes. The dictionary

entries d ∈ D correspond to the leaves of the associated parsing tree. The encoder represents

each parsed string by the fixed length binary code word corresponding to its dictionary entry.

If the dictionary D has M entries, then the code word for each phrase has ⌈log2 M⌉ bits. The

best known variable-to-fixed length code is now generally attributed to Tunstall [34]; however,

it was independently discovered by Khodak [14], Verhoeff [35], and possibly others. Known

applications of Tunstall codes include error-resilient video and image coders, encoders for bi-

level images, data recording, retrieval systems and approximating uniform distribution [1] (cf.

also [3]).

Tunstall’s algorithm is easy to visualize through evolving parsing trees in which every edge

corresponds to a letter from the source alphabet A. Start with a tree having a root node and m

leaves corresponding to symbols from A. At each iteration select the current leaf corresponding

to a string of the highest probability and grow m children out of it, one for each symbol in A.

After J iterations, the parsing tree has J non-root internal nodes and M = (m−1)J +1 leaves,

which each corresponds to a distinct dictionary entry. The dictionary entries are prefix-free

and can be easily enumerated. Note that a string x of the highest probability, is not usually

unique since there are in principle imany different strings of the same probability (of the same

type). Tunstall’s algorithm adds these strings to the dictionary (parsing tree) one by one in

an arbitrary (random) order.

Tunstall’s algorithm has been studied extensively (cf. the survey article [1]). Simple bounds

for its redundancy were obtained independently by Khodak [14] and by Jelinek and Schnei-

der [13]. Tjalkens and Willems [31] were the first to look at extensions of this code to sources

with memory. Savari and Gallager [22] proposed a generalization of Tunstall’s algorithm for

Markov sources and used renewal theory for an asymptotic analysis of average code word

length and redundancy for memoryless and Markov sources. Savari [23] later published a non-

asymptotic analysis of the Tunstall code for binary, memoryless sources with small entropies.

Universal variable-to-fixed length codes were analyzed in [15, 16, 18, 32, 33, 36]; however, we are

unaware of analyses of the minimax redundancy for variable-to-fixed and variable-to-variable

length codes, and these problems remain open. In this paper, we offer a new perspective and

generalized asymptotic analysis of the Tunstall and Khodak codes for known distributions.

Among others, we establish the limiting distribution of the phrase length and provide a precise

asymptotic analysis of the average redundancy of the Tunstall and Khodak codes.

In our analysis, we focus on Khodak’s [14] construction of the variable-to-fixed length codes

(see also [15]). Khodak independently discovered the Tunstall code using a rather different

approach. Let pi be the probability of the i-th source symbol and let pmin = min{p1, . . . , pm}.

Throughout we assume that the probabilities pi are known. Khodak suggested choosing a real
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number r ∈ (0, pmin) and then growing a complete parsing tree until all its leaves d satisfy

pmin r ≤ P (d) < r, d ∈ D. (1)

It follows that if y is a proper prefix of one or more entries of D = Dr, i.e., y corresponds to

an internal node of T = Tr, then

P (y) ≥ r. (2)

Therefore, it is easier to characterize the internal nodes of the parsing tree Tr rather than its

leaves. This algebraic characterization is crucial for our analysis, and will be used throughout

this paper.

It is known (see, e.g., [13, Lemma 6], and [22, Lemma 2]) that the resulting parsing tree

for the Khodak algorithm is exactly the same as a tree constructed by Tunstall’s algorithm.

However, one should observe that in Khodak’s construction all strings with the same (highest)

probability are added at once while in Tunstall’s algorithm one by one in an arbitrary order.

Therefore, in Khodak’s algorithm the number of dictionary entries, Mr, does not attain all

positive integers (there are certain jumps depending on the probabilities pi.) The asymptotic

relationship between r and the resulting number of entries Mr was studied in [22] and will be

established here in a different way in Theorem 3.

Our main result presented in Theorem 2 establishes the central limit theorem for the phrase

length L = Lr of the Khodak algorithm. We will present two different proof methods. The

first one, presented in Section 3 is based on the observation that Lr can be interpreted as the

stopping time of a random walk (i.e., a sum of independent random variables) that directly

provides the central limit theorem (cf. also recent paper [11]). Applying analytic techniques

we also obtain asymptotic expansions for Mr as r → 0 (see Theorem 3). Then the central

limit theorem can be rewritten in terms of the number of phrases M = Mr. Recall that Mr,

given by Khodak’s condition (2), does not attain all positive integers. However, by using an

“interpolation argument” we also derive a central limit theorem for the phrase length L̃M of

the original Tunstall code in terms of M (see Theorem 1).

Our second approach to L = Lr, presented in Section 4, is entirely analytic and applies tools

such as generating functions, Mellin transform, and Tauberian theorems [27]. This analysis

provides a precise asymptotic characterization of the the moment generating function for the

phrase length Lr. We note that this work directly extends recent analyses of fixed-to-variable

codes (cf. [5, 10, 26, 27]) through tools of analytic algorithmics and hence belongs to the

domain of analytic information theory. We point out that a slight modification of the Tunstall

code (e.g., bounding its phrase length) may lead to considerable analytic difficulties that can

be overcome by analytic tools [6]. Furthermore, our analytic approach allows us to estimate

all moments and in principle the large deviations.

In passing, we should mention that in recent years we have seen resurgence of interest in

variable-to-fixed-length codes, resulting in several faster techniques for their constructions (cf.

[2, 21, 28, 30, 20]), as well as novel applications such as the use of Tunstall algorithm for the

approximation of uniform distributions for random number generation and related problems [3].

We believe that our results will be useful for better understanding of these new techniques and

applications.
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The paper is organized as follows. In the next section we present our main results and their

consequences. Section 3 is devoted to proofs of these results by a combination of renewal theory

and Tauberian theorems. Finally, in Section 4 we briefly present a uniform approach using

analytic techniques such as generating functions, functional equations, and Mellin transform

techniques.

2 Main Results and Consequences

We consider a memoryless source over an m-ary alphabet A. Let pi > 0 be the probability of

the ith letter of alphabet A, i ∈ {1, . . . ,m}. Given a complete prefix free dictionary D and its

corresponding complete parsing tree T , the encoder partitions the source output sequence into

a sequence of variable-length phrases. Let d ∈ D denote a dictionary entry (and a leaf in T ),

P (d) be its probability, and |d| be its length. Since we assume that parsing tree is complete

we have
∑

d∈D
P (d) = 1.

Thus (D, P ) is a probability space and every parameter on D becomes a random variable. Our

main focus is on the random variable L = |d|, the phrase length of a dictionary string.

Throughout we use the following additional notation. Let

H = p1 log(1/p1) + · · · pm log(1/pm)

denote the entropy in natural units and

H2 = p1 log2(1/p1) + · · · pm log2(1/pm)

be a parameter needed to express the variance of the phrase length.

2.1 Central Limit Theorems for the Dictionary Length

We first consider the Tunstall code and present the central limit theorem for its phrase length

L̃M . We prove it and all our findings discussed here in the next sections.

Theorem 1. Let L̃M denote the phrase length of the Tunstall code when the dictionary size is

M ≥ 1. Then for a biased source (i.e., when the probabilities pi are not equal)

L̃M − 1
H log M

√

(

H2

H3 − 1
H

)

log M
→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, and

E[L̃M ] =
log M

H
+ O(1),

Var[L̃M ] ∼

(

H2

H3
−

1

H

)

log M

for M → ∞.
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Remark: Observe that for the unbiased case (i.e., p1 = p2 = · · · − pm = 1/m), we have

H = log m and H2 = log2 m which suggests that Var[L̃M ] = O(1). This is actually true since

the algorithms always tends to generate a complete m-ary tree so that the phrase lengths are

always concentrated at one level or at two consecutive levels. Obviously, there is no central

limit theorem in this case.

Since Khodak’s construction induces Tunstall codes for special values of M = Mr, we

obtain a corresponding property for Lr. In fact, we will show in Section 4 that Theorems 1

and 2 are equivalent.

Theorem 2. Let Lr denote the phrase length in Khodak’s construction of the Tunstall code

with a dictionary of size Mr over a biased memoryless source. Then

Lr −
1
H log Mr

√

(

H2

H3 − 1
H

)

log Mr

→ N(0, 1), (3)

and

E[Lr] =
log Mr

H
+ O(1), (4)

Var[Lr] ∼

(

H2

H3
−

1

H

)

log Mr (5)

for r → 0.

Note that Theorem 2 is implicit since there is no explicit dependence on r. Of course,

it it obvious that Mr → ∞ as r → 0. In the next section we present precise results on the

dependence of Mr on r.

2.2 The Dependence on r in Khodak’s Construction

We consider two cases: We say that log(1/p1), . . . , log(1/pm) are rationally related if there

exists a positive real number L such that log(1/p1), . . . , log(1/pm) are integer multiples of L,

that is,

log(1/pj) = njL, nj ∈ Z, (1 ≤ j ≤ m).

Without loss of generality we can assume that L is as large as possible which is equivalent to

gcd(n1, . . . , nm) = 1. For example, in the binary case m = 2 this is equivalent to the statement

that the ratio log(1/p1)/ log(1/p2) is rational. Similarly we say that log(1/p1), . . . , log(1/pm)

are irrationally related if they are not rationally related.

Now we are in the position to state our second main result concerning the dependence of

Mr on r that plays the crucial role in the analysis.

Theorem 3. Let M = Mr denote the dictionary size in Khodak’s construction of the Tunstall

code.

(i) If log(1/p1), . . . , log(1/pm) are irrationally related, then

Mr =
m − 1

rH
+ o(1/r), (6)
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and

E[Lr] =
log(1/r)

H
+

H2

2H2
+ o(1). (7)

(ii) If log(1/p1), . . . , log(1/pm) are rationally related, let L > 0 be the largest real number for

which log(1/pj), 1 ≤ j ≤ m are integer multiples of L. Then

Mr = (m − 1)
Q1(log(1/r))

rH
+ O(r−(1−η)) (8)

for some η > 0, where

Q1(x) =
L

1 − e−L
e−L〈 x

L
〉, (9)

and 〈y〉 = y − ⌊y⌋ is the fractional part of the real number y. Furthermore,

E[Lr] =
log(1/r)

H
+

H2

2H2
+

Q2(log(1/r))

H
+ O(v−η) (10)

for some η > 0, where

Q2(x) = L

(

1

2
−

〈 x

L

〉

)

(11)

is an oscillating function.

By combining (6) and (7) resp. (8) and (10) we can be even more precise. In the irrational

case we have

E[Lr] =
log Mr

H
+

log H

H
−

log(m − 1)

H
+

H2

2H2
+ o(1)

and in the rational case we find

E[Lr] =
log Mr

H
+

log H

H
−

log(m − 1)

H
+

H2

2H2
+

Q2(log v) − log(Q1(log v))

H
+ O(M−η

r ).

Note that (9) and (11) yield

Q2(log v) − log (Q1(log v)) = − log L + log(1 − e−L) +
L

2
= log

(

sinh(L/2)

L/2

)

so that there is actually no oscillation. We find

E[Lr] =
log Mr

H
+

log H

H
−

log(m − 1)

H
+

H2

2H2
+

1

H
log

(

sinh(L/2)

L/2

)

+ O(M−η
r ).

As a direct consequence, we can derive a precise asymptotic formula for the average redun-

dancy of the Tunstall and Khodak codes that is defined in [22] by

RM =
log M

E[LM ]
− H . (12)

The next result follows from the above derivations.
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Corollary 1. Let Dr denote the dictionary in Khodak’s construction of the Tunstall code of

size Mr. If log(1/p1), . . . , log(1/pm) are irrationally related, then

RMr =
H

log Mr

(

−
H2

2H
− log H + log(m − 1)

)

+ o

(

1

log Mr

)

.

In the rationally related case, we have

RMr =
H

log Mr

(

−
H2

2H
− log H + log(m − 1) − log

(

sinh(L/2)

L/2

)

)

+ O

(

1

(log Mr)2

)

,

where L > 0 is the largest real number for which log(1/p1), . . . , log(1/pm) are integer multiples

of L.

In passing we observe that the Corollary 1 is a special case of Theorems 5 and 12 of [22] for

the Tunstall code. Observe also that the Tunstall code redundancy has some oscillations for

the rational case which disappear for the Khodak code. This is explained in the next section.

3 Proofs of the Theorems

In this section we prove Theorem 1–3 using a combination of renewal theory (cf. Section 3.2)

and analytic techniques (cf. Section 3.1). In the next Section 4, we present a unified and

general proof that falls under the analytic information theory paradigm.

3.1 Proof of Theorem 3(i)

We prove here (6) and (8) of Theorem 3(i). Set v = 1/r and let A(v) devote the number of

source strings with probability at least v−1; i.e.,

A(v) =
∑

y:P (y)≥1/v

1. (13)

Observe that A(v) represents the number of internal nodes in Khodak’s construction with

parameter r = v−1 of a Tunstall tree. Equivalently, A(v) counts the number of strings y with

the self-information − log P (y) ≤ log v. The function A(v) satisfies the following recurrence.

Lemma 1.

A(v) =

{

0 v < 1,

1 + A(vp1) + · · · + A(vpm) v ≥ 1.
(14)

Proof. By definition we have A(v) = 0 for v < 1. Now suppose that v ≥ 1. Since every m-ary

string is either the empty string or a string starting with a source letter j ∈ A, 1 ≤ j ≤ m, we

directly find the recurrence A(v) = 1 + A(vp1) + · · · + A(vpm).

Since A(v) represents the number of internal nodes in Khodak’s construction with param-

eter v−1 it follows that the dictionary size is given by

Mr = |Dr| = (m − 1)A(v) + 1.
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Therefore, it is sufficient to obtain asymptotic expansions for A(v) for v → ∞.

Setting F (x) = A(ex) and cj = log(1/pj) the above recurrence relations for A(v) rewrite

to F (x) = 0 for x < 0 and to

F (x) = 1 + F (x − c1) + · · · + F (x − cm) (x ≥ 0).

Let α be the smallest positive real root of the equation zc1 + · · · + zcm = 1, set ϕ = 1/α and

C =
m

∑

j=1

cjϕ
−cj .

Choi and Golin [4] used analytic techniques (i.e., Laplace transform) to prove that as x → ∞

F (x) ∼
ϕx

C log ϕ
,

if c1, . . . , cm are irrationally related, and

F (x) =
L

C(1 − ϕ−L)
ϕx + O(ρx),

if c1, . . . , cm are rationally related and 0 ≤ ρ < ϕ.

In our case we have α = 1/e, ϕ = e, and C = H. Hence,

A(v) = F (log v) ∼
v

H

if log(1/p1), . . . , log(1/pm) are irrationally related, and

A(v) = F (log v) =
vL

H(1 − e−L)
+ O(v1−η)

if log(1/p1), . . . , log(1/pm) are rationally related. The asymptotic relations, (6) and (8) follow.

3.2 Proof of Theorem 2 and Theorem 3(ii)

Let us consider Khodak’s formulation of the Tunstall code and let Lr denote the phrase length

for the dictionary Dr. The essential observation is that the phrase length Lr can be interpreted

as the stopping time of a sum of independent random variables (i.e., a random walk).

Lemma 2. Let Xj , j ≥ 1, be independent random variables with probability distribution

P[Xj = log(1/pj)] = pj, (1 ≤ j ≤ m),

and set

Sn =

n
∑

j=1

Xj .

to be a random walk. Let also N(c) be the stopping time

N(c) = min{n : Sn > c},

that is, the first time Sn exceeds threshold c. Then the distributions of Lr and N(log(1/r))

coincide.
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Proof. Consider the infinite m-ary tree T and define a discrete random walk on T in the

following way. It starts at the root and at each step it goes to the j-th successor of the present

node with probability pj, 1 ≤ j ≤ m. By the definition after n steps the logarithm log(1/P (x))

of the probability P (x) of the endpoint x (i.e., leaf x) is equal to Sn in distribution.

Recall that the leaves d of the parsing tree of Tr are precisely those nodes for which P (d) < r

and P (y) ≥ r for all y on the path from the root to d (that are different from d). Equivalently

we have log(1/P (d)) > log(1/r). Thus, the parsing tree Tr corresponds to all random walks

that are stopped at those nodes where log(1/P (d)) > log(1/r). Hence, the distribution of Lr

and the stopping time N(log(1/r)) coincide.

We also shall use Theorem 2.5 of Gut [7] who proved that for c → ∞

N(c) − c/θ
√

σ2c/θ3
→ N(0, 1),

provided that first and second moments, E[Xj ] = θ and Var[Xj ] = σ2, are non-zero and finite.

In our particular case we have

c = log(1/r)

θ = E[Xj ] =

m
∑

j=1

pj log(1/pj) = H, and

σ2 = Var[Xj ] =

m
∑

j=1

pj log2(1/pj) − H2 = H2 − H2.

Observe that σ2 > provided all probabilities pi are not equal. Hence, Theorem 2 follows

immediately.

Next we observe that Xj has a lattice distribution (in the terminology of [7]), that is,

Xj contains only integer multiples of a positive real number L, if and only if log(1/p1), . . . ,

log(1/pm) are rationally related. Thus we can apply [7, Theorem 2.6] and [7, Theorem 2.7’]

and obtain, as c → ∞,

E[N(c)] =
c

θ
+

E[X2
1 ]

2(E[X1])2
+ o(1),

Var[N(c)] =
σ2c

θ3
+ o(c),

if log(1/p1), . . . , log(1/pm) are irrationally related, and

E[N(c)] =
c

θ
+

E[X2
1 ]

2(E[X1])2
+

L

θ

(

1

2
−

〈 c

L

〉

)

o(1),

Var[N(c)] =
σ2c

θ3
+ o(c),

if log(1/p1), . . . , log(1/pm) are rationally related. In summary, the asymptotic relations (7)

and (10) follow, given (6) and (8) just proved.
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3.3 Proof of Theorem 1

We finally show that Theorem 1 can be deduced from Theorem 2. (The converse is obviously

true.) This follows, informally, from the fact that Tunstall’s code and Khodak’s code are

“almost equivalent.” They ultimately produce the same parsing trees, however, they react

differently to the probability tie when expanding a leaf. More precisely, when there are several

leaves with the same probability, the Tunstall algorithm selects one leaf and expands it, then

selects another leaf of the same probability, and continues doing it until all leaves of the same

probability are expanded. The Khodak algorithm expands all leaves with the same probability

simultaneously, in parallel; thus there are “jumps” in Mr when the parsing tree grows. This

situation occurs for the rational case and for the irrational case.

Let’s be more precise. Suppose that r is chosen in a way that there exists a word x with

P (x) = r. In particular the dictionary Dr contains all external nodes d that are adjacent to

internals x with P (x) = r. Now let D̃M be the dictionary (of size M) of any Tunstall code

where only some of these internal nodes x with P (x) = r have been expanded. Then Dr is the

Tunstall code where all nodes x with P (x) = r have been expanded. Hence, by this coupling of

the dictionaries we certainly have for the dictionary lengths |L̃M − Lr| ≤ 1. This also implies

that E[L̃M ] = E[Lr] + O(1) and Var[L̃M − Lr] = O(1).

We also observe that the central limit theorem is not affected by this variation. Since Dr

satisfies a central limit theorem (see Theorem 2) we find

L̃M − 1
H log M

√

(

H2

H3 − 1
H

)

log M
→ N(0, 1).

For the expected value and variance we have E[L̃M ] = log M
H + O(1) and

Var[L̃M ] = Var[Lr] + O
(

√

Var[Dr]
)

∼

(

H2

H3
−

1

H

)

log M.

Indeed, more generally, let Yn = Xn +Zn and we know that Xn satisfies a central limit theorem

of the form
Xn − E[Xn]
√

Var[Xn]
→ N(0, 1)

such that Var[Xn] → ∞ as well as Var[Zn]/Var[Xn] → 0 as n → ∞. Then also Yn satisfies a

central limit theorem, i.e.
Yn −E[Yn]
√

Var[Yn]
→ N(0, 1),

and we have

Var[Yn] = Var[Xn] + Var[Zn] + O(
√

Var[Xn]Var[Zn]) = Var[Xn] · (1 + o(1))

which follows from Cauchy-Schwarz’s inequality

E[(Xn − E[Xn])(Zn − E[Zn])] ≤ (Var[Xn])1/2(Var[Zn])1/2.

This completes the proof of Theorem 1.
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4 A Unified Analysis via Mellin Transform Techniques

In this section we prove again Theorem 2 and 3 in a unified way via generating function, Mellin

transform, and Tauberian techniques. These techniques constitute the main tools of analytic

information theory [27].

As we notice in the previous section, analytic tools were already used to derive the number

of dictionary entries through the function A(v) defined in (13). More generally, in some

applications, including a modified Tunstall code [6], one often analyses a generalized A(v)

function defined as follows

A(v) =
∑

y:P (y)≥1/v; y∈C
f(y),

where f(v) is a function and C is an additional constraint. For example, in the modified Tunstall

code discussed in [6] the phrase length is bounded by a K; hence in this case C = {y ≤ K}.

It is shown in [6] that such a simple modification of the summation index of A(v) leads to

considerable challenges that can be overcome only by analytic tools.† In summary, we believe

the methodology discussed below offers us significant advantages and expands its applicability

beyond Tunstall code.

We should point out that the rationally related case of Theorems 2 and 3 is elementary (i.e.,

complex analysis is not used), while the irrational case requires non-trivial tools like Wiener’s

Tauberian theorem (cf. [4]). In fact, we can uniformly use the Mellin transform for the rational

and irrational cases. However, in the sequel we concentrate on the more challenging irrational

case. To simplify our presentation in this section, we only consider the binary case with

m = 2 and p1 6= p2. Extension to m-ary alphabet is straightforward. It amounts to replace

1 − p−s
1 − p−s

2 by 1 −
∑m

i=1 p−s
i . (e.g., see [27] for further explanations).

4.1 Combinatorics

In order to obtain the results for Mr = (m − 1)A(v) + 1 and Lr we analyze

A(v) =
∑

y:P (y)≥1/v

1

and the probability generating function

D(v, z) =
∑

d∈Dr

P (d)z|d|,

where we use the convention v = 1/r.

By Lemma 1 we already know that A(v) satisfies the recurrence A(v) = 1+A(p1v)+A(p2v).

Interestingly, D(v, z) can be characterized in a similar way.

Lemma 3. Let S(v, z) be defined by

S(v, z) =
∑

y:P (y)≥1/v

P (y)z|y|.

†In this particular case, one must consider infinite number of saddle points that may coincide with poles;

details can be found in [6].
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Then S(v, z) satisfies the recurrence

S(v, z) =

{

0 v < 1,

1 + p1S(vp1, z) + p2S(vp2, z) v ≥ 1.
(15)

Furthermore,

D(v, z) = 1 + (z − 1)S(v, z) (16)

for all complex z.

Proof. The recurrence (15) can be derived in the same way as in the proof of Lemma 1. The

relation (16) follows from the following general fact on trees. Let D̃ be a uniquely parsable

dictionary (e.g., leaves in the corresponding parsing tree) and Ỹ be the collection of strings

which are proper prefixes of one or more dictionary entries (e.g., internal nodes). Then for all

complex z
∑

d∈D̃

P (d)
(

1 + z + · · · z|d|−1
)

=
∑

y∈Ỹ

P (y)z|y|, (17)

This can be deduced directly by induction and implies (16).

Alternatively we can use a result of [19], where it is shown that for every real-valued function

G defined on strings over A

∑

d∈D̃

P (d)G(d) = G(∅) +
∑

y∈Ỹ

P (y)
∑

s∈A

P (ys)

P (y)
(G(ys) − G(y))

where ∅ denotes an empty string. By choosing G(x) = z|x| we directly find

∑

d∈D̃

P (d)z|d| = z0 +
∑

y∈Ỹ

P (y)
∑

s∈A
P (s)

(

z z|y| − z|y|
)

= 1 + (z − 1)
∑

y∈Ỹ

P (y)

which again proves (17).

4.2 Mellin Transforms

The Mellin transform F ∗(s) of a function F (v) is defined as (cf. [27])

F ∗(s) =

∫ ∞

0
F (v)vs−1dv,

if it exists. Using the fact that the Mellin transform of F (ax) is a−sF ∗(s), a simple analysis

of recurrence (14) reveals that the Mellin transform A∗(s) of A(v) is given by

A∗(s) =
−1

s(1 − p−s
1 − p−s

2 )
, ℜ(s) < −1.

12



In order to find asymptotics of A(v) as v → ∞ one can directly use the Tauberian theorem (for

the Mellin transform) by Wiener-Ikehara‡ [17, Theorem 4.1]. For this purpose we have to check

that s0 = −1 is the only (polar) singularity on the line ℜ(s) = −1 and that (s+1)A∗(s) can be

analytically extended to a region that contains the line ℜ(s) = −1. However, if log(p1)/ log(p2)

is irrational this follows from a lemma of Schachinger [25] and Jacquet [9] (see Lemma 4 below).

In particular, in the irrational case one finds

A(v) ∼
v

H
, (v → ∞).

This proves the first part of Theorem 3.

In passing we point out that for the rational case, that is, log(1/p1) = n1L and log(1/p2) =

n2L for coprime integers n1, n2 we just have to analyze the recurrence

Gn = 1 + Gn−n1
+ Gn−n2

,

where Gn abbreviates A(eLn). Equivalently we have A(v) = G(⌊log v⌋/L). Thus, from

G(n) =
1

(1 − e−L)(de−dL + be−bL)
eLn + O(eLn(1−η))

for some η > 0 we directly obtain

A(v) =
Le−L〈log v/L〉

(1 − e−L)

v

H
+ O(v(1−η))

where, recall 〈x〉 is the fractional part of x.

Similarly, we can analyze the expected value of the path length, that is,

E[Lr] =
∑

y:P (y)≥1/v

P (y).

Here the Mellin transform is given by

E∗(s) =

∫ ∞

0
E[L1/v]v

s−1 dv =
−1

s(1 − p1−s
1 − p1−s

2 )
(ℜ(s) < 0)

and it leads (in the irrational case) to the asymptotic equivalent

E[Lr] =
log(1/r)

H
+

H2

2H2
+ o(1).

In the rational case, it is easy to see that

E[Lr] =
log(1/r)

H
+

H2

2H2
+

L

H

(

1

2
−

〈

log(1/r)

L

〉)

+ O(rη)

‡One major assumption is that there are no singularities on the line ℜ(s) = −1 despite s0 = −1. In fact

this Tauberian theorem is usually used to prove the prime number theorem. The function −ζ′(s)/ζ(s) (where

ζ(s) =
P

n≥1
n−s denotes the Riemann zeta function) is (almost) the Mellin transform of the Chebyshev Ψ-

function Ψ(x) =
P

pk≤x log p. Since ζ(s) has no zeroes on the line ℜ(s) = 1, s 6= 1, it follows that Ψ(x) ∼ x

(x → ∞) which is equivalent to the prime number theorem π(x) =
P

p≤x 1 ∼ x/ log x.
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for some η > 0. This improves the error term of the first proof of Theorem 3.

The analysis of D(v, z) is more involved. Here we assume that z is a real number close to

1, say |z − 1| ≤ δ. The Mellin transform with respect to v becomes

D∗(s, z) =
1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s
, (18)

for ℜ(s) < s0(z) where s0(z) denotes the real solution of zp1−s
1 + zp1−s

2 = 1. Note that s = 0

is no singularity of D∗(s, z) if z 6= 1. As above it, follows from Wiener-Ikehara’s Tauberian

theorem that (for fixed z 6= 1)

D(v, z) =
1 − z

zs0(z)H(s0(z) − 1)
v−s0(z)(1 + o(1)), (v → ∞), (19)

where H(s) abbreviates

H(s) = p−s
1 log(1/p1) + p−s

2 log(1/p2).

Assume for a moment that the error term in (19) is uniform in z (see next section for a

detailed proof), then we can use the local expansion

s0(z) = −
z − 1

H
+

(

1

H
−

H2

2H3

)

(z − 1)2 + O(|z − 1|3) (20)

to obtain uniformly for |z − 1| ≤ δ as v → ∞, and then

D(v, z) = v−s0(z)(1 + O(s0(z))

= v
z−1

H
+

“

1

H
− H2

2H3

”

(z−1)2+O(|z−1|3)
(1 + O(|z − 1|) + o(1)) .

Recall that D(v, z) = E[zLr ] (with v = 1/r) is the probability generating function of the

dictionary length Lr and, therefore, it can be used to derive the limiting behavior. We can use

the local expansion (20) with z = et/(log v)1/2

to obtain

v−s0(z) = exp

(

log v

(

z − 1

H
−

(

1

H
−

H2

2H3

)

(z − 1)2 + O(|z − 1|3)

))

= exp

(

1

H
t
√

log v +
1

H

t2

2
−

(

1

H
−

H2

2H3

)

t2 + O(t3/
√

log v)

)

= exp

(

1

H
t
√

log v +

(

H2

H3
−

1

H

)

t2

2
+ O(t3/

√

log v)

)

Hence, we arrive at

E
[

et(Lr− 1

H
log v)/

√
log v

]

= e−(t/H)
√

log vE
[

eLrt/
√

log v
]

= e
t2

2

“

H2

H3
− 1

H

”

+ o(1). (21)

By Goncharov’s theorem [27] this proves the normal limiting distribution as v → ∞

Note that the above derivations also imply convergence of all (centralized) moments, rate

of convergence in CLT, as well as exponential tail estimates. We choose not to present it here

leaving details to the interested reader.

The main remaining problem is to show that the limit relation (19) holds uniformly for

|z − 1| ≤ δ. We present a proof in the following section.
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4.3 Uniform Tauberian Theorems

In order to find the asymptotics of the Mellin transform D(v, z) as v → ∞ one uses the inverse

transform of D∗(s, z), that is (cf. [27])

D(v, z) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT
D∗(s, z)v−s ds, (22)

which is valid for σ < s0(z).

One problem with the integral (22) is that it is not absolutely convergent since the integrand

is only of order 1/s. To circumvent this problem, we resort to analyze another integral, namely

D1(v, z) =

∫ v

0
D(w, z) dw

=
1

2πi

∫ σ+i∞

σ−i∞

(

1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s

)

v−s+1

1 − s
ds

Here the integrand is of order O(1/s2) assuring absolute convergence.

The usual procedure (cf. [27]) to prove asymptotics in this context is to shift the line of

integration to the right and to collect residues of the polar singularities of D∗(s, z) which are

given by the set

Z(z) = {s ∈ C : zp1−s
1 + zp1−s

2 = 1} (23)

of all complex roots of zp1−s
1 + zp1−s

2 = 1.

The structure of Z(z) has been determined by Schachinger [25] and Jacquet [9] and is

stated here (in a slightly extended form).

Lemma 4. Suppose that 0 < p1 < p2 < 1 with p1 + p2 = 1 and that z is a real number with

|z − 1| ≤ δ for some 0 < δ < 1. Let

Z(z) = {s ∈ C : p1−s
1 + p1−s

2 = 1/z}.

Then

(i) All s ∈ Z(z) satisfy

s0(z) ≤ ℜ(s) ≤ σ0(z),

where s0(z) < 1 is the (unique) real solution of p1−s
1 + p1−s

2 = 1/z and σ0(z) > 1 is the

(unique) real solution of 1/z + p1−s
2 = p1−s

1 . Furthermore, for every integer k there uniquely

exists sk(z) ∈ Z(z) with

(2k − 1)π/ log(1/p1) < ℑ(sk(z)) < (2k + 1)π/ log(1/p1)

and consequently Z(z) = {sk(z) : k ∈ Z}.

(ii) If log p2/ log p1 is irrational, then ℜ(sk(z)) > ℜ(s0(z)) for all k 6= 0.

(iii) If log p2/ log p1 = r/d is rational, where gcd(r, d) = 1 for integers r, d > 0, then we have

ℜ(sk(z)) = ℜ(s0(z)) if and only if k ≡ 0 mod d. In particular ℜ(s1(z)), . . . ,ℜ(sd−1(z)) >

ℜ(s0(z)) and

sk(z) = sk mod d(z) +
2(k − k mod d)πi

log p1
,

that is, all s ∈ Z(z) are uniquely determined by s0(z) and by s1(z), s2(z), . . . , sd−1(z), and

their imaginary parts constitute an arithmetic progression.
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One interesting consequence is that in the irrational case we have

min
|z−1|≤δ

(ℜ(sk(z)) −ℜ(s0(z))) > 0 (24)

for all k 6= 0. This is due to the fact that sk(z) varies continuously in z.

By shifting the integral to the line ℜ(s) = σ′ > max{1, σ0(z)} and collecting residues we

obtain

D1(v, z) =
1 − z

zs0(z)(1 − s0(z))H(s0(z) − 1)
v−s0(z)+1

+
∑

k 6=0

1 − z

zsk(z)(1 − sk(z))H(sk(z) − 1)
v−sk(z)+1 +

1 − z

1 − 2z
− 1

+
1

2πi

∫ σ′+i∞

σ′−i∞

(

1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s

)

v−s+1

1 − s
ds.

Due to the factors sk(z)(1−sk(z)) in the denominator the series is convergent. Thus, for every

ε > 0 there exists K0 such that

∑

|k|≥K0

∣

∣

∣

∣

1 − z

zsk(z)(1 − sk(z))H(sk(z) − 1)
v−sk(z)+1

∣

∣

∣

∣

≤
ε

2
v−s0(z)+1.

Furthermore, by (24) there exists v0 such that

∑

0<|k|<K0

∣

∣

∣

∣

1 − z

zsk(z)(1 − sk(z))H(sk(z) − 1)
v−sk(z)+1

∣

∣

∣

∣

≤
ε

2
v−s0(z)+1

for all v ≥ v0 and uniformly for all |z| ≤ δ. Finally by shifting σ′ → ∞ it actually follow that

1

2πi

∫ σ′+i∞

σ′−i∞

(

1 − z

s(1 − zp1−s
1 − zp1−s

2 )
−

1

s

)

v−s+1

1 − s
ds = 0

since the integral can be made arbitrarily small. Thus, as v → ∞ and uniformly for |z−1| ≤ δ

D1(v, z) =
1 − z

zs0(z)(1 − s0(z))H(s0(z) − 1)
v−s0(z)+1 (1 + |z − 1|o(1)) +

1 − z

1 − 2z
− 1.

Since D(v, y) is monotone in v we can apply the elementary Tauberian Lemma 5 (proved

below) to obtain

D(v, z) =
1 − z

zs0(z)H(s0(z) − 1)
v−s0(z)

(

1 + |z − 1|1/2o (1)
)

,

where the convergence is again uniform for |z − 1| ≤ δ. Hence, we are actually in the situation

of (19) and the central limit theorem follows.

To complete the proof, we need a Tauberian result presented below.

Lemma 5. Suppose that f(v, λ) is a non-negative increasing function in v ≥ 0, where λ is a

real parameter with |λ| ≤ δ for some 0 < δ < 1. Assume that F (v, λ) =
∫ v
0 f(w, λ) dw has the

asymptotic expansion

F (v, λ) = g(λ)
vλ+1

λ + 1
(1 + λ · o(1)) + C(λ)
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as v → ∞ and uniformly for |λ| ≤ δ, where g(λ) and C(λ) are continuous function depending

just on λ with g(λ) 6= 0. Then

f(v, λ) = g(λ)vλ(1 + |λ|
1

2 · o(1))

as v → ∞ and again uniformly for |λ| ≤ δ.

Proof. Without loss of generality we may assume that g(λ) = 1. By the assumption

∣

∣

∣

∣

F (v, λ) − C(λ) −
vλ+1

λ + 1

∣

∣

∣

∣

≤ ε|λ|
vλ+1

λ + 1

for v ≥ v0 and all |λ| ≤ δ. Set v′ = (ε|λ|)1/2v. By monotonicity we obtain (for v ≥ v0)

f(v, λ) ≤
F (v + v′, λ) − F (v, λ)

v′

≤
1

v′

(

(v + v′)λ+1

λ + 1
−

vλ+1

λ + 1

)

+
2

v′
ε|λ|

(v + v′)λ+1

λ + 1

=
1

v′(λ + 1)

(

vλ+1 + (λ + 1)vλv′ + O(vλ−1(v′)2) − vλ+1
)

+ O

(

ε|λ|vλ+1

v′

)

= vλ + O
(

vλε
1

2 |λ|
1

2

)

+ O

(

ε|λ|vλ+1

v′

)

= vλ + O
(

vλε
1

2 |λ|
1

2

)

.

In essentially the same way we obtain a corresponding lower bound (for v ≥ v0 + v
1/2
0 ). Hence,

the result follows.
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