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ABSTRACT 

This paper describes design of transforms for extended block sizes for video coding. The proposed transforms are 
orthogonal integer transforms, based on a simple recursive factorization structure, and allow very compact and efficient 
implementations. We discuss techniques used for finding integer and scale factors in these transforms, and describe our 
final design. We evaluate efficiency of our proposed transforms in VCEG's H.265/JMKTA framework, and show that 
they achieve nearly identical performance compared to much more complex transforms in the current test model. 
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1. INTRODUCTION 
Discrete Cosine Transform of type II (DCT-II)1-3 is a fundamental operation performed by the majority of today’s image 
and video compression algorithms. It was first suggested by N. Ahmed, T. Natarajan, and K. R. Rao,1 and subsequent 
research provided a number of theoretical arguments for its use, such as energy compaction property, asymptotic 
equivalence of DCT to the Karhunen-Loève transform for signals produced by Markov-1 process with high correlation 
coefficient, etc. (see, e.g. [3, Chapter 3] for a survey of the related results).  

DCT-II of size 8 has served as the transform of choice in H.261, JPEG, MPEG-1, MPEG-2, H.263, and MPEG-4 visual 
standards.2,4-9 More recent standards, such as MPEG-4 AVC | H.264,10 VC-1,11 and AVS12 have adopted integer 
approximations of DCT-II with transform sizes: 4, 8, and 16. An emerging JPEG-XR image compression standard13 uses 
overlapping transforms, which are also based on 4-point DCT-II kernels. 

A new emerging standard, High Efficiency Video Coding (HEVC), currently under development by Joint Collaborative 
Team of video experts from MPEG and ITU-T SG16 (JCT-VC),14 includes a number of integer transforms of sizes 
ranging from 4 to 64. As video resolutions keep increasing, it is possible that even larger transforms will be considered 
in the future.  

In this paper we describe design of scaled integer transforms, which are numerically stable, fully recursive in structure, 
and remain orthogonal with perfect scaling (in the absence of quantization). As such, they are well suitable for use in 
future video coding applications. Described transforms have been proposed to ITU-T SG16 Q6 (VCEG) standardization 
committee, 21 and were also included in Qualcomm’s response to JCT-VC call for proposals22. 

This paper is organized as follows. In Section 2, we describe design of underlying factorization that we use in the 
transform. Section 3 discusses conversion to integer arithmetic and other implementation aspects. Section 4 provides 
experimental results obtained using this transform in ITU-T SG16 Q6 JMKTA video coding model. Conclusions are 
drawn in Section 5.  

2. FACTORIZATION 
Let { } , 0,..., 1nx n N= −  be a sequence of input samples (i.e. line of pixel values). DCT-II and its inverse transform over 
this sequence are defined as follows: 
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where ( ) 1/ 2kλ = , if 0,k =  and 1  otherwise. DCT-IV transform and its inverse are defined as follows: 
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We note that in video coding, we usually work with NxN matrices of input data, and so the above transforms need to be 
applied to all rows and columns in a separable fashion, to produce corresponding matrices of transform coefficients2. 
Hereafter we will adopt such separable model in our design of integer 2D transforms, and will focus mainly on speeding 
up computations of the component 1D transforms†.  
 
For further convenience, we omit normalization factors ( 2 / N  and ( )kλ ) and define matrices:  
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representing coefficients of DCT-II, and DCT-IV transforms correspondingly.  
 
It is well known, that even-sized DCT-II matrix can be factored into a product containing direct sum of smaller DCT-II 
and DCT-IV matrices as follows2,3: 
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where PN  is a permutation matrix producing reordering: 
 2 / 2 2 1, , 0,1,..., / 2 1,i i N i ix x x x i N+ +′ ′= = = −  (2) 

and where IN/2 and JN/2 denote N/2× N/2 identity and order reversal matrices respectively. 

Chen-Smith-Fralick15, Wang, and many other well-known DCT-II factorizations2,3 rely on factorization (1) as a basic 
step in their decimation process. 

We next apply the following decomposition to the DCT-IV block in (1): 
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where: 

PN  is a reordering matrix (2),  EN/2 is the diagonal sign-alteration matrix 

 ( ){ }/ 2 diag -1 , 0,1,... / 2 1,k
NE k N= = −  (4) 

                                                 
† While faster non-separable 2D designs can possibly be created, 3 their large expanded structure, and the need for support of multiple 
(including hybrid, e.g. 8x16) block sizes makes this approach much less appealing in practice. 
 



 

 

RN  is the matrix of Givens rotations: 
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and where /2
II
NC  denotes matrices of the remaining half-sized DCT-II transforms. 

This decomposition of DCT-IV is very similar to the one derived by G. Plonka and M.Tache17.  In our formulation (3) all 
normalization factors of 1/ 2  are outside the transform.  

Finally, by nesting (1) and (3) we can now close the recursion. For example, an N=16 DCT-II will be decomposed into 
8-point DCT-II and DCT-IV. Then 8-point DCT-IV will be split into two 4-point DCT-II transforms. The 8-point DCT-
II will be split into 4-point DCT-II and DCT-IV. This is continued until we reach 2-point blocks (i.e. simple butterflies) 
for both DCT-II and DCT-IV. We show full flow-graph of this factorization in Figure 1. 

This factorization is numerically stable: only planar rotations are used throughout, it is fully recursive, and in terms of 
instruction count it is equivalent to best known practical algorithms, such as C. Loeffler, et.al. 16 

3. CONVERSION TO INTEGER ARITHMETICS 
In order to convert transform to a fixed-point arithmetic we introduce common scale factors for each interconnected 
group of butterflies in the transform. For example, for a 16-point transform shown in Figure 1, this will be: 

- factor ξ  associated with factors A and B in the left-most butterflies in the transform,  
- factor ζ  associated with 4 factors C -- E in the 3-rd stage of the transform, and 
- factor η  associated with 8 factors G -- N in the 2-nd stage of the transform. 

 
As long as the following set of conditions are met: 
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the resulting scaled transform is the DCT-II.  If this set of fractions only approximates the associated cosine and sine 
values, we will say that the resulting transform is an approximation of DCT-II.  

Note that (6) allow tradeoffs between values of factors inside the transform A-N and scale factors , , .ξ ς η Such 
flexibility was already exploited to gain extra precision in the design of fixed-point algorithms in references5,18-20.   

In our case, we are also concerned with retaining orthogonality of scaled transform. This creates additional conditions: 
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Figure. 1. N=16-point DCT-II factorization produced by recursive use of decompositions (1) and (3). Note that it uses 3 

identical 4-point DCT-II blocks. Scale factors , ,ξ ς η  are introduced to simplify conversion of this transform to integer 
arithmetic. Ideally, the following equations must be achieved to make this transform a DCT-II: 
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Hence, considering all above, the task of design of an integer approximation of DCT-II now boils down to finding some 
small integers A-N, such that conditions (7) are met, and such that the resulting fractions produce good approximations 
of sine and cosine factors in the transform (6). 

One can easily solve this task by straightforward enumeration.  As an example, we show several example solutions 
found for factors A and B (and associated scale factor ξ ) in Table 1.  

 

 



 

 

Table 1. Example factors A, B and 2 2A Bξ = + found as solutions for transform approximation problem. 

Factors Approximation errors Complexity of multiplications  
by factors A and B A B 2 2A Bξ = +  ( )3

8cos Aπ
ξ−  ( )3

8sin Bπ
ξ−  

1 2 5  -0.0645302 0.0294523 1 shift 

2 5 29  0.0112928 -0.00459716 1 addition + 2 shifts 

3 7 58  -0.0112359 0.0047345 2 additions + 1 shift 

5 12 13  -0.00193195 0.000802609 2 additions + 2 shifts 

17 41 1970  -0.00033159 0.000137419 3 additions + 2 shifts 
 

Table 2. Complete set of factors selected for the design of 16-point transform. 

A B C D E F N L J H G I K M 
2 5 19 4 16 11 6 11 21 27 34 38 42 43 

 

Table 3. Normalized set of factors selected for the design of 16-point transform. 

A B C D E F N L J H G I K M 
2/4 5/4 19/32 4/32 16/32 11/32 6/64 11/64 21/64 27/64 34/64 38/64 42/64 43/64 

 

Based on Table 1, it can be observed that larges values A and B produce better approximations, but this also increases 
complexity (in terms of bit-width and gates count) of the transform.  But we also note that even small numbers (such 
A=2 and B=5) seem to achieve pretty good precision (around 1%) in this case.  

We repeat similar exhaustive search for other groups of factors as well. A full set of factors that we have selected for 
N=16 point transform design is shown in Table 2. 

In order to reduce the dynamic range of factors within the transform we further normalize them by nearest dyadic 
numbers. This optimization is prompted by the fact that divisions by dyadic numbers can be implemented as binary 
shifts, which are gratis on many platforms. The resulting normalized quantities are now shown in Table 3. 

Finally, we now need to compute exact values of scale factors moved outside the transform. In the original form, as 
shown in Figure 1, such factors are: 
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By incorporating scale factor values from our integer solutions (Tables 2), and their subsequent normalization, we 
obtain: 

 
After multiplication by 4 and conversion to floating point representation, these scale factors are: 

 
 

which is reasonably tight, considering 4 stages of the transform.  

In our final design these factors are cross-multiplied to produce a scale matrix for the entire 2D transform, which is 
subsequently merged with the quantization matrix of video encoder.  

 



 

 

4. EXPERIMENTAL RESULTS 
The proposed scheme is tested in the JMKTA video encoder under the VCEG common testing conditions25. 
The reference transforms is a much more complex, direct approximation of matrices of DCT-II transforms by using 8-bit 
fixed-point factors. Full matrix multiplication is used. The configuration parameters UseRDO_Q, UseHPFilter and 
UseNewOffset are set to 1 in both the reference and our proposed solution. Extended block sizes23, MDDT24 (for intra 
coded macroblocks), and CABAC are also enabled in both the reference as well as our proposed solution. Table 4 shows 
the percentages of BD-Rate reduction for all test sequences (up to 1080P resolution) under the VCEG common testing 
conditions. On average, the use of proposed transforms for extended block sizes, results in a 0.0159% and 0.0359% BD-
Rate increase for IPPP and HierB configurations.  

 
Table 4: Simulation results for proposed transforms for extended block sizes. 

 
Sequence Conditions: 

BigBlocks, MDDT, CABAC, UseRDO_Q=1, 
UseNewOffsert = 1, UseHPFilter = 1,  

 IPPP HierB 
CIF   

Foreman -0.04 -0.06 
Mobile +0.01 -0.02 
Paris +0.06 +0.02 

Tempete -0.02 +0.08 
Average 0.0025 +0.005 

   
WQVGA   
Flower4 -0.20 -0.23 
Keiba3 +0.20 +0.05 
Nuts5 +0.37 +0.14 

Average +0.1233 -0.0133 
   

WVGA   
Flower4 -0.02 +0.10 
Keiba3 -0.38 -0.20 
Nuts5 +0.17 +0.29 

Average -0.0767 -0.0633 
   

SVGA   
Janine +0.15 +0.11 

Average +0.15 +0.11 
   

720P   
BigShips -0.06 +0.08 

City +0.15 +0.06 
Crew +0.27 +0.13 
Night +0.03 -0.01 
Jets -1.04 -0.02 

Raven +0.16 +0.38 
Average -0.0817 +0.1033 

   
1080P   

CrowdRun +0.06 -0.03 
ParkJoy +0.06 +0.07 
Traffic -0.15 +0.05 

Toysandcalendar +0.09 +0.16 
Subnflower +0.48 -0.36 

Average 0.108 -0.022 
   

Overall Average +0.0159 +0.0359 



 

 

5. CONCLUSIONS 
We have proposed design of fast orthogonal integer transforms for video coding. The design is based on a simple 
recursive factorization structure, allowing very compact and efficient implementations. We have implemented and tested 
our transforms in VCEG's H.265/JMKTA framework. We have showed that under common VCEG test conditions our 
proposed transforms achieve nearly identical performance compared to much more complex transforms in the current 
test model. 
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