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ABSTRACT

We study a problem of approximate computation of color transforms (with real and possibly irrational factors)
using integer arithmetics. We show that precision of such computations can be significantly improved if we
allow input or output variables to be scaled by some constant. The problem of finding such a constant turns
out to be related to the classic Diophantine approximation problem. We use this relation to explain how best
scaled approximations can be derived, and provide several examples of using this technique for design of color
transforms.

1. INTRODUCTION

Color transforms are fundamental operations used in image/video acquisition, processing, encoding/decoding,
and reproduction. They typically map colors presented in a reference color space (such as CIE’s RGB or XYZ
color spaces1) into a space, which is more suitable for a particular system or a device. For example, color
television systems (NTSC, PAL, SECAM) have defined YUV-type color spaces (YIQ, YUV, YDbDr), which
allowed to communicate chrominance information separately (which was needed for compatibility with black-
and-white systems1) and in a way that it consumes much smaller bandwidth. Cameras, displays, and printers
use their own types of color spaces specific to sensor, illuminant, or ink characteristics.

In most cases, color transforms are linear operators specified by matrices of transform factors. In some
transforms, such as ones between YUV and YIQ color spaces,1 transform factors are irrational, but more often
they are specified as decimal fractions with finite (e.g. 3 . . . 7) number of digits after the period.

Nevertheless, most practical implementations of color transforms in today’s digital systems use approximations
of transform factors (denoted here as θ1, . . . , θm, m > 2), by dyadic fractions:

θ1 ≈ p1/2k , . . . , θm ≈ pm/2k , (1)

where p1, . . . , pm, and k are integers. This way, multiplications or dot products with θ1, . . . , θm can be efficiently
implemented in integer arithmetics as follows:

xθi ≈ xpi/2k Ã (x ∗ pi) À k ,∑
i xiθi ≈ ∑

i xipi/2k Ã (
∑

i xi ∗ pi) À k ,

where ∗ and À denote integer multiplication and bit-wise right shift operations correspondingly.

The key parameter that influences the complexity of transforms using dyadic approximations (1) is the
number of “precision bits” k. In software implementations, this parameter is often constrained by the width of
registers (e.g. 8, 16 or 32), and failure to meet such a constraint can possibly double (or even quadruple) the
execution time. In hardware designs, the parameter k directly affects the number of gates needed to implement
adders and multipliers.

The precision of approximations (1) also depends on the parameter k. Thus, given k and θi, the best choice
of pi produces ∣∣θi−pi/2k

∣∣ = 2−k
∣∣2kθi−pi

∣∣ = 2−kmin
z∈Z

∣∣2kθi−z
∣∣ 6 2−k−1,
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which means, that minimum worst case magnitude of error

∆(k) = min
p1,...,pm

max
i

{∣∣θi − pi/2k
∣∣} . (2)

is also bounded by
∆(k) 6 2−k−1 . (3)

In simple terms, this means, that on average, each bit of precision in dyadic approximations (1) reduces their
worst case error at least by half.

In this paper, we develop a technique for improving precision of such approximations, based on the assump-
tion† that input or output variables of color transforms can be uniformly scaled by some constant . In other words,
instead of approximating constants θ1, . . . , θm that are specified by a transform matrix, we suggest to approximate
their scaled values:

θ1ξ ≈ p1/2k , . . . , θmξ ≈ pm/2k . (4)

where p1, . . . , pm, and k are integers, and ξ is a new “common factor” parameter that we introduce. We note,
that in many applications, such uniform scaling can be perfectly acceptable (or even desirable, e.g. to provide
headroom preventing overflows), or it can be easily “neutralized” by applying the inverse factor 1/ξ in an adjacent
stage in image processing stack.

We show, that for infinitely many k, by carefully choosing the value of a common factor ξ the equivalent
(scaled by 1/ξ) worst case error of approximations (4):

∆ξ(k) = 1
ξ min

p1,...,pm

max
i

{∣∣θiξ − pi/2k
∣∣} (5)

can be made as small as
∆ξ(k) . 2−k

(
1+

1
m−1

)
. (6)

In other words, we show that common-factor-based approximations can be significantly more precise than
direct ones. In applications to color transforms, where, typically m = 3, this means that we should be able to
find approximations with 2−3/2k error rate, and which means that compared to non-scaled designs we should be
able to achieve same precision using 50% less bits! We confirm this prediction by providing several examples of
transforms designs that demonstrate such complexity savings.

This paper is organized as follows. In the next section, we survey several known facts about rational approx-
imations of real numbers. In Section 3, we study the problem of finding common factors ξ minimizing worst
case errors of scaled dyadic approximations. We show that this problem is connected to one of finding best
rational (Diophantine) approximations, and then we use this connection to derive our main results. Section 4
provides several practical examples showing how to apply our technique for design of color transforms. Finally,
in Section 5 we provide our concluding remarks.

2. SOME FACTS FROM DIOPHANTINE APPROXIMATION THEORY

We start by recalling few properties of continued fractions and Diophantine approximations.2

2.1 Continued fractions and convergents

A finite continued fraction is a rational number presented in the form:

a0 +
1

a1 + 1
a2+ ... 1

an

, (7)

†This idea is similar to one that we have previously suggested for implementations of Discrete Cosine Transforms.4,5



where a0 is an integer, and ak are positive integers for all k > 1. The usual compact notation for a continued
fraction is:

[a0, a1, . . . , an] .

Using, for example, Euclidean algorithm, it is easy to show that every rational number has a finite continued
fraction expansion. Furthermore, if we consider an infinite sequence of integers a0, a1, . . ., such that ak > 0, k > 1,
then a limit

θ = lim
n→∞

[a0, a1, . . . , an]

exists and is denoted by the infinite continued fraction expression θ = [a0, a1, . . .]. Conversely, if θ = θ0 is an
irrational number and if we recursively set

an = bθnc , θn+1 =
1

θn − an
, n = 1, 2, . . .

then θ = [a0, a1, . . .].

Two irrational numbers θ and θ′ are said to be equivalent if:

θ = [a0, a1, . . . , al, c1, c2, . . .]
θ′ = [b0, b1, . . . , bm, c1, c2, . . .]

for some suitable l, m and a0, a1, . . . , al, b0, b1, . . . , bm, c1, c2, . . ..

The convergents of an irrational number θ with infinite continued fraction expansion θ = [a0, a1, . . .] are
defined as

pn

qn
= [a0, a1, . . . , an]

where integers pn, qn are coprime. By setting p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1, these integers can be
recursively obtained by

pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2 , n = 1, 2, . . . .

It can be noted that pn, qn are growing exponentially fast, and that convergents pn

qn
(n = 1, 2, . . .) produce rational

approximations of θ such that:
|θ − pn/qn| < 1/q2

n . (8)

Furthermore, obtained in such a manner approximations turn out to be best2 in a sense that:
∣∣θ − pn/qn

∣∣ <∣∣θ − p/q
∣∣ for any integers p, 0 < q < qn.

2.2 Precision of rational approximations

The following fact (cf. [2, p. 11,Theorem V]) is an important consequence and refinement of the precision bound (8)
that holds for convergents.

Fact 2.1. Let θ be irrational. Then there exist infinitely many integers q and p such that

|θ − p/q| < κ(θ)q−2, (9)

where:

κ(θ) =




1√
5

, if θ equivalent to
√

5−1
2 (root of θ2 + θ − 1 = 0) ,

1
2
√

2
, if θ equivalent to

√
2− 1 (root of θ2 + 2θ − 1 = 0) ,

5√
221

, if θ equivalent to
√

221−11
10 (root of 5θ2 + 11θ − 5 = 0) ,

13√
1517

, if θ equivalent to
√

1517−29
26 (root of 13θ2 + 29θ − 13 = 0) ,

. . .

(10)

is a chain producing a sequence 1√
5
, 1

2
√

2
, 5√

221
, 13√

1517
, . . . that tends to 1

3 .



In a case when we have multiple irrational constants that need to be approximated by rational numbers:

θ1 ≈ p1/q , . . . , θm ≈ pm/q , (11)

the following result holds (cf. [2, p. 14, Theorem III], [3, p.138]):

Fact 2.2. Let θ1, . . . , θm, (m > 2) be irrationals. Then, there are infinitely many integers q and p1, . . . , pm,
such that

max
i
{|θi − pi/q|} < m

m+1 q−1−1/m . (12)

We note, that in case when m = 2, formula (12) produces a somewhat weaker bound than (9), but it is certainly
more general (valid for any number of constants m > 2).

3. PRECISION OF SCALED DYADIC APPROXIMATIONS

Given a set of real (and possibly irrational) constants θ1, . . . , θm, (m > 2) we are now tasked with studying
precision of scaled dyadic approximations

θ1ξ ≈ p1/2k , . . . , θmξ ≈ pm/2k . (13)

where p1, . . . , pm, and k are integers, and ξ is a new “common factor” parameter that we can adjust.

We immediately notice, that by picking some integer q, setting ξ := q/2k, and then then multiplying both
sides in (13) by 1/ξ we arrive at:

1
ξ

∣∣ξ θi − pi/2k
∣∣ = |θi − pi/q| , i = 1, . . . , n ,

which maps our problem into one of finding m simultaneous Diophantine approximations. The relevant result
for this case is already provided by Fact 2.2.

Nevertheless, as we will show in this Section, there exists an even better value for ξ, which not only maps
the problem to one of simultaneous Diophantine approximations, but also reduces the dimensionality of that
problem.

We start by considering a special case when m = 2.

3.1 Minimizing errors of pairs of approximations.

By δ1(ξ) and δ2(ξ) we denote individual errors of approximations (13) as:

δ1(ξ) = θ1ξ − p1/2k , δ2(ξ) = θ2ξ − p2/2k , (14)

and we are trying to find minimum of max {|δ1(ξ)| , |δ2(ξ)|} by adjusting ξ.

We make the following observation.

Lemma 3.1. Let θ1, θ2 be real numbers, such that θ1θ2 > 0, and let k, p1, and p2 be integers. Then, there exist
values ξ∗ and δ∗, such that

δ∗= max {|δ1(ξ∗)| , |δ2(ξ∗)|} = min
ξ

max {|δ1(ξ)| , |δ2(ξ)|} .

These values are:
ξ∗ = 1

2k
p1+p2
θ1+θ2

, (15)

and
δ∗ = 1

2k

∣∣∣ θ1
p1+p2
θ1+θ2

− p1

∣∣∣ = 1
2k

∣∣∣ θ2
p1+p2
θ1+θ2

− p2

∣∣∣ . (16)

Proof. Condition θ1θ2 > 0 implies that both δ1(ξ) and δ2(ξ) are non-constant and have the same direction of
growth with ξ.
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If δ1(ξ) and δ2(ξ) intersect 0 at the same location, then there exists point ξ∗ such that δ1(ξ∗) = δ2(ξ∗) = 0.
This implies that

ξ∗ = 1
2k

p1
θ1

= 1
2k

p2
θ2

,

which is a special case of (15).

If δ1(ξ) and δ2(ξ) intersect 0 at different locations, then there exists ξ∗ such that (see Figure 1):

δ1(ξ∗) = −δ2(ξ∗) . (17)

Moreover, since both δ1(ξ) and δ2(ξ) have same direction of growth, moving ξ away from ξ∗ will lead to asym-
metric changes in absolute values of δ1(ξ) or δ2(ξ). That is, one of them will increase. Therefore, ξ∗ is the point
of minimum of max {|δ1(ξ)| , |δ2(ξ)|}.

By solving (17) with respect to ξ∗ we arrive at formula (15), and by plugging (15) in (14), and using (17) we
arrive at (16).

3.2 Associated Diophantine approximation

Let us now further assume that p1, p2 have same signs as θ1, and θ2. Then, by denoting p = p1, q = p1 + p2, and

θ∗ = θ1
θ1+θ2

. (18)

we observe that both parts of (16) turn into

δ∗ = |q|
2k |θ∗ − p/q| .

By further de-scaling this quantity by ξ∗ we arrive at

δ∗/ξ∗ = |θ1 + θ2| |θ∗ − p/q| , (19)

which means, that by plugging ξ = ξ∗, the problem of finding minimum of the worst case error of a pair of scaled
dyadic rational approximations

∆ξ(k) = 1
ξ min

p1,p2
max {|δ1(ξ)| , |δ2(ξ)|} .

becomes equivalent to the problem of finding rational approximations of a single number θ∗

θ∗ ≈ p/q . (20)

Furthermore, if θ∗ is irrational, then (20) turns into a classic Diophantine approximation problem (cf. Fact 2.1).



3.3 Main result for approximations of pairs of constants

We claim the following.

Theorem 3.2. Let θ1, θ2 be irrational numbers of the same sign. Then, there exist infinitely many integers k
and real numbers ξ, such that

∆ξ(k) = 1
ξ min

p1,p2
max

{∣∣θ1ξ − p1/2k
∣∣ ,

∣∣θ2ξ − p2/2k
∣∣}

< κ
(

θ1
θ1+θ2

)
4

|θ1+θ2| 2
−2k = O

(
2−2k

)
. (21)

Proof. We use the following construction.

By assuming that ξ = ξ∗, and solving the associated Diophantine approximation problem (20), we find
integers p, q satisfying precision constraint (9) of Fact 1. This also gives us integer factors p1 = p and p2 = q− p
for our dyadic approximations. In order to select k, we can use some additional constraints. For example, we
can require

1/2 < ξ∗ 6 1 , (22)

which is satisfied by choosing k = dlog2 (q/(θ1 + θ2))e.
Then, by plugging precision bound (9) in (19), using lower bound for ξ∗ from (22), and some simple algebra,

we arrive at expression (21) claimed by the theorem.

3.4 Extension of analysis to m-ary case

We now turn our attention to a problem of finding dyadic rational approximations for larger (m > 2) sets of
numbers:

θ1ξ ≈ p1/2k , . . . , θmξ ≈ pm/2k . (23)

For simplicity, we assume that all numbers θ1, . . . , θm and p1, . . . , pm are either positive or negative.

From Lemma 1, we know that for any pair of numbers θi, θj , i 6= j, we can compute factor

ξ∗ij = 1
2k

pi+pj

θi+θj
, (24)

which will “symmetrize” errors of approximations:

δ∗ij = 1
2k

∣∣ θi
pi+pj

θi+θj
− pi

∣∣ = 1
2k

∣∣ θj
pi+pj

θi+θj
− pj

∣∣ . (25)

and which will turn them into a Diophantine approximation:

δ∗ij = |qij |
2k

∣∣ θ∗ij − pij/qij

∣∣ . (26)

where pij = pi, qij = pi + pj , and
θ∗ij = θi

θi+θj
. (27)

By applying ξ∗ij to the remaining constants {θk, k 6= i, j}, we note that their scaled approximations also turn
into standard Diophantine forms:

∣∣θkξ∗ij − pk/2k
∣∣ = 1

2k

∣∣θk
pi+pj

θi+θj
− pk

∣∣ = |qij |
2k

∣∣ θ∗k|ij − pk/qij

∣∣ ,

where, however, the resulting constants
θ∗k|ij = θk

θi+θj
, (28)

and errors of their approximations are different.



This means that by using factor ξ∗ij we can reduce the problem of finding m dyadic rational approxima-
tions (23) to one of finding m− 1 simultaneous Diophantine approximations:

θ∗ij ≈ pij/qij ,
{
θ∗k|ij ≈ pk/qij , k 6= i, j

}
. (29)

This leads to the following result.

Theorem 3.3. Let θ1, . . . , θ2 be m > 2 irrational numbers of the same sign. Then, there exist infinitely many
integers k and real values ξ, such that

∆ξ(k) = 1
ξ min

p1,...,pm

max
i

{∣∣θiξ − pi/2k
∣∣}

< m−1
m

(
min

ij
{|θi + θj |}

)− 1
m−1 2−(k−1)

(
1+

1
m−1

)

= O

(
2−k

(
1+

1
m−1

))
. (30)

Proof. We use the following construction.

We scan all
(
m
2

)
pairs of indices i, j, and find a pair, for which the normalized (by 1/ξ∗ij) worst case error:

1
ξ∗ij

min
pij ,pk

|qij |
2k max

{∣∣θ∗ij − pij

qij

∣∣, ∣∣θ∗k|ij − pk

qij

∣∣, k 6= i, j
}

= |θi + θj | min
pij ,pk

max
{∣∣θ∗ij − pij

qij

∣∣,
∣∣θ∗k|ij − pk

qij

∣∣, k 6= i, j
}

is the smallest one.

Then, by applying Fact 2, using (24) to replace qij with 2k and ξ∗ij , and subsequently, bounds 1/2 < ξ∗ij 6 1
(which is attainable by choice of k), and |θi + θj | > minij{|θi + θj |}, we arrive at estimate (30) claimed by the
theorem.

4. APPLICATIONS TO THE DESIGN OF COLOR TRANSFORMS

In Table 1 we summarize specifications of several color transforms that we will use as examples. Most of these
transforms belong to a class of RGB-to-YUV-type transforms, which are well known, and widely used in existing
analog and digital television systems.1 Color space YSbSr (see last column of Table 1), is a more recent proposal,
and it seems to be of interest for future image and video coding applications.6

The transform parameters α, β, γ are used to compute luminance components

Y = αR + βG + γB ,

whereas δ and ε, or alternatively κ, λ, µ, ν are the factors involved in computation of chrominance components
according to flow-graphs presented in Figure 2. We note that flow-graph on the right in Figure 2 is a more
general one, and it allows specification of transforms with rotations of chroma coordinates, such as transforms
to YIQ or YSbSr spaces.

As a first example for using our approximation technique, consider computations of products by factors
θ1 := δ, and θ2 := ε involved in computation of chrominance (U,V) coordinates. There are only 2 factors that
need to be simultaneously approximated in this case, and so we need to find convergents for the associated factor:

θ∗ = θ1
θ1+θ2

≈ p/q

and then use them for deriving scale factor ξ∗. We illustrate all steps in this process in Table 2.

We notice, that the first scaled approximation:

δξ ≈ 1/2 , εξ ≈ 1/2 , (31)



Table 1. Parameters of several existing RGB-to-YUV-type color transforms.

Color spaces / Standards
Factors YUV YDbDr YPbPr/YCbCr YPbPr/YCbCr YIQ YSrSb

PAL SECAM ITU-R BT.601 ITU-R BT.709 NTSC [6]

α 0.299 0.299 0.299 0.2125 0.299 0.3227
β 0.587 0.587 0.587 0.7154 0.587 0.3447
γ 0.114 0.114 0.114 0.0721 0.114 0.3326

δ 0.615
1

1− α
1.333

1

1− α

1

2

1

1− α

1

2

1

1− α

ε 0.436
1

1− γ
−1.333

1

1− γ

1

2 1− γ

1

2

1

1− γ

κ 0.615 1.333
1

2

1

2
0.877 (1−α) cos(33) −0.1643

+0.492 α sin(33)

λ 0.436
α

1− γ
−1.333

α

1− γ

1

2

α

1− γ

1

2

α

1− γ
−0.877 (1− α) sin(33) 0.5095

+0.492 α cos(33)

µ 0.615
γ

1− α
1.333

γ

1− α

1

2

γ

1− α

1

2

γ

1− α
0.877 γ cos(33) 0.3470

+0.492 (1−γ) sin(33)

ν 0.436 −1.333
1

2

1

2
−0.877 γ sin(33) 0.3870

+0.492 (1−γ) cos(33)

R

B

G Y

V

U

β
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γ
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Figure 2. Flow-graphs and factors in RGB to YUV-type transforms.

leads to exactly the same dyadic fractions as non-scaled one, but the worst case error of such approximations
turns our to be almost 3 times smaller (0.07.. vs 0.2..)!

The next pair of scaled approximation (using 3-bit denominator):

δξ ≈ 4/8 = 1/2 , εξ ≈ 5/8 , (32)

produces error that is almost 20 times smaller than one of non-scaled approximation (0.003 vs. 0.06). The
error of these appoximations is so small that they may become useful in practice. They may be suitable, for
example, in cases when input and output values are quantized to 8-bit resolution, in which case the maximum
error resulting from using these approximations is less than a quantization step size.

Indeed, if further precision is consider necessary, Table 2 lists a couple of additional options. In all cases it
can be seen that scaled approximations are remarkably more precise than non-scaled ones.

Next, we apply our technique for approximation of 3 constants α, β, γ involved in computation of luminance.
This a bit more complex process, where we need to enumerate pairs of indices i, j with the goal of finding
associated factor θ∗ij leading to best set of rational approximations:

θ∗ij = θi

θi+θj
≈ p/q , and

{
θ∗k|ij = θk

θi+θj
≈ pk/q, k 6= i, j

}
,

and then use their denominator q for deriving scale factor ξ∗. Details of this process are summarized in Table 3.



Table 2. Approximations of a pair of constants θ1 = δ(YCbCr) ≈ 0.5643340858, and θ2 = ε(YCbCr) ≈ 0.7132667618.

Direct dyadic approximations: Associated rational appr-s: Scaled dyadic approximations:

θ1 ≈ p1/2k, θ2 ≈ p2/2k θ∗ = θ1/(θ1+θ2) ≈ p/q θ1ξ
∗ ≈ p1/2k, θ2ξ

∗ ≈ p2/2k

k p1 p2 maxi

∣∣θi− pi

2k

∣∣ q p
∣∣∣θ∗− p

q

∣∣∣ ξ∗= 1
2k

q
θ1+θ2

p1 p2
1

ξ∗ maxi

∣∣θiξ
∗− pi

2k

∣∣
1 1 1 0.2132667618 2 1 0.0582860744 0.7827170762 1 1 0.0744663380
2 2 3 0.0643340858
3 5 6 0.0606659142 9 4 0.0027305188 0.8805567108 4 5 0.0030718336
4 9 11 0.0257667618
5 18 23 0.0054832382 43 19 0.0001465395 1.0517760712 19 24 0.0001872190
6 36 46 0.0054832382
7 72 91 0.0023292618 163 72 0.0000038658 0.9967412768 72 91 0.0000049389
8 144 183 0.0018340858
9 289 365 0.0003761368

10 578 730 0.0003761368
11 1156 1461 0.0001190392

Table 3. Approximations of constants: θ1 = α = 0.299, θ2 = β = 0.587, and θ3 = γ = 0.114.

Direct dyadic approximations: Associated rational appr-s: Scaled dyadic approximations:

θ1 ≈ p1/2k, θ2 ≈ p2/2k, θ3 ≈ p3/2k θ∗ij = θi/(θi+θj) ≈ p/q θ1ξ
∗ ≈ p1/2k, θ2ξ

∗ ≈ p2/2k, θ3ξ
∗ ≈ p3/2k

k p1 p2 p3 maxi

∣∣θi− pi

2k

∣∣ i j q p
∣∣∣θ∗ij− p

q

∣∣∣ ξ∗= 1
2k

q
θi+θj

p1 p2 p3
1

ξ∗ maxi

∣∣θiξ
∗− pi

2k

∣∣
1 1 1 0 0.2010000000
2 1 2 0 0.1140000000
3 2 5 1 0.0490000000
4 5 9 2 0.0245000000 1 3 7 5 0.00968523 1.0593220339 5 10 2 0.0040000000
5 10 19 4 0.0135000000 2 3 19 8 0.00548089 0.8470042796 8 16 3 0.0038421053
6 19 38 7 0.0067500000
7 38 75 15 0.0031875000
8 77 150 29 0.0017812500 1 3 76 55 0.00028673 0.7188256659 55 108 21 0.0001184211
9 153 301 58 0.0008906250

10 306 601 117 0.0002578125 1 3 413 299 0 0.9765625000 299 587 114 0
11 612 1202 233 0.0002304688

Here again, we see that scaled approximations turn out to be significantly more precise. For example, scaled
approximation (with k = 4):

αξ ≈ 5/16 , βξ ≈ 10/16 , γξ ≈ 2/16 ,

produces an error which is more than 6 times smaller (0.004 vs 0.0245) than one of the non-scaled approximation.
Such error is already small enough, such that it could be useful for some applications. Moreover, the factors
produced by such scaled approximations are remarkably easy to use for multiplier-less computations. Thus the
computation of luminance can be accomplished by using just 3 additions, as follows:

Y = αR + βG + γB Ã




x = G + (R À 1);
y = (x + B) À 3;

Y ′ = y + (x À 1);

where Y ′ ≈ Y ξ, x, y are temporary variables, and ∗, À are multiplication and binary right shift operators
correspondingly.

Table 3 also offers several higher precision solutions, and one that is absolutely precise:

αξ = 299/1024 , βξ = 587/1024 , γξ = 114/1024 .

This exact solution is here due to the fact that our transform factors are actually rational numbers (decimal
fractions converted to dyadic by scale factor ξ = 1000/1024).
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Figure 3. Color transforms with added scale-factors (parameters ξ, ζ).

4.1 Framework for design of scaled RGB↔YUV transforms

In Figure 4 we show a generalized flow-graph of an RGB-to-YUV-type transform, where we have introduced two
scale factors:

ξ – affecting the luminance (Y ),

ζ – affecting the chrominance components (U, V ), (Cb,Cr), etc.

Inside the flow-graph, the scale factor ξ is applied to a triple of factors (1, α, γ), and the scale factor ζ is
applied to 4 factors κ, λ, µ, ν. We note, that in some transforms, such as YCbCr and YPbPr, chrominance
constants κ and ν are identical, so the number of distinct constants affected by ζ in these cases is also 3.

We show the approximations of luminance and chrominance-related groups of factors for RGB→YCbCr/YPbPr
transforms in Tables 4 and 5 correspondingly. It can be seen that both luminance and chrominance groups can
be approximated with approximately 2e−3 error by using just 4 or 5 fixed-point mantissa bits (parameter k)!
Same level of precision with non-scaled dyadic approximations is reachable by using 8 or more bits.

Furthermore, it can be seen that the reduction in bit-width of factors also translates in simpler factorizations
of multiplications. For example, by using α′ ≈ 1/4, γ′ ≈ 3/32, ξ ≈ 27/32 approximations for luminance factors,
and λ′ ≈ 1/8, µ′ ≈ 1/16, κ′ = ν′ ≈ 3/8 for chrominance, we arrive at the algorithm for computing full scaled
transform:

r1 = R−G;
b1 = B −G;
g1 = G + (G ¿ 3);
y1 = g1 + b1;
Y ′ = (y1− (y1 À 2) + r1) À 3;
V ′ = (r1 + (r1 ¿ 1)− (b1 À 1)) À 3;
U ′ = (b1 + (b1 ¿ 1)− r1) À 3;

that uses only 10 additions. Here r1, b1, g1, y1 are intermediate quantities, and Y ′ ≈ Y ξ, V ′ ≈ V ζ, and U ′ = Uζ.

This described scaled factorization and approximation technique can be easily applied to derive many other
useful transforms (such as ones for YUV, YIQ, YDbDr, YSbSr, and other color spaces).

5. CONCLUSION

We have proposed and studied a technique for improving implementations of color transforms by introduction
of scale factors. We have shown that this technique is related to one of finding simultaneous Diophantine
approximations, and have shown how it can be solved and used to produce efficient implementations of color
transforms.



Table 4. Approximations of luminance group of constants: θ1 = α = 0.299, θ2 = γ = 0.114, and θ3 = 1.0.

Direct dyadic approximations: Associated rational appr-s: Scaled dyadic approximations:

θ1 ≈ p1/2k, θ2 ≈ p2/2k, θ3 ≈ p3/2k θ∗ij = θi/(θi+θj) ≈ p/q θ1ξ
∗ ≈ p1/2k, θ2ξ

∗ ≈ p2/2k, θ3ξ
∗ ≈ p3/2k

k p1 p2 p3 maxi

∣∣θi− pi

2k

∣∣ i j q p
∣∣∣θ∗ij− p

q

∣∣∣ ξ∗= 1
2k

q
θi+θj

p1 p2 p3
1

ξ∗ maxi

∣∣θiξ
∗− pi

2k

∣∣
1 1 0 2 0.2010000000
2 1 0 4 0.1140000000
3 2 1 8 0.0490000000
4 5 2 16 0.0135000000 0 1 7 5 0.0096852300 1.0593220339 5 2 17 0.0040000000
5 10 4 32 0.0135000000 1 2 30 3 0.0023339318 0.8415619390 8 3 27 0.0026000000
6 19 7 64 0.0046250000
7 38 15 128 0.0031875000
8 77 29 256 0.0017812500 0 1 76 55 0.0002867338 0.7188256659 55 21 184 0.0001184211
9 153 58 512 0.0007187500

10 306 117 1024 0.0002578125 0 1 413 299 0 0.9765625000 299 114 1000 0
11 612 233 2048 0.0002304688

Table 5. Approximations of chrominance group of constants (in RGB→YPbPr/YCbCr transforms): θ1 = λ ≈
0.1687358916, θ2 = µ ≈ 0.0813124108, and θ3 = µ = 0.5.

Direct dyadic approximations: Associated rational appr-s: Scaled dyadic approximations:

θ1 ≈ p1/2k, θ2 ≈ p2/2k, θ3 ≈ p3/2k θ∗ij = θi/(θi+θj) ≈ p/q θ1ξ
∗ ≈ p1/2k, θ2ξ

∗ ≈ p2/2k, θ3ξ
∗ ≈ p3/2k

k p1 p2 p3 maxi

∣∣θi− pi

2k

∣∣ i j q p
∣∣∣θ∗ij− p

q

∣∣∣ ξ∗= 1
2k

q
θi+θj

p1 p2 p3
1

ξ∗ maxi

∣∣θiξ
∗− pi

2k

∣∣
1 0 0 1 0.1687358916
2 1 0 2 0.0813124108
3 1 1 4 0.0437358916
4 3 1 8 0.0188124108 0 1 3 2 0.0081465193 0.7498551205 2 1 6 0.0020370233
5 5 3 16 0.0124858916
6 11 5 32 0.0031874108
7 22 10 64 0.0031874108 1 2 93 13 0.0000923544 1.2498657975 27 13 80 0.0000536867
8 43 21 128 0.0007671416
9 86 42 256 0.0007671416

10 173 83 512 0.0002577233
11 346 167 1024 0.0002305579
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