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Abstract. As well known, when the input video is upscaled, the effectiveness of its transcoding and 
delivery may suffer. The encoded stream may not look sharp and use more bits than necessary. 
Then with adaptive streaming, extra streams may be added to reach such a maximum resolution and 
bitrate. The result is a significant waste of storage, bandwidth, and compute resources. In this paper, 
we explain the origins of this problem, survey existing methods for addressing it, and then propose 
our solution. Our proposed design incorporates a novel "true resolution" detection technique and a 
traditional CAE (context-aware encoding) encoding ladder generator. The CAE generator receives 
the detected "true resolution" of content as a limit for resolutions to include in the ladder. Such a limit 
enables all subsequent savings. We describe the details of our proposed resolution detection 
method, bring examples explaining how it works, and then study the performance of our proposed 
system in practice. Our study, performed using 500 video assets representing 120 hours of real-
world production material, confirms the effectiveness of this technique. It shows that in many 
practical cases, the incoming content is, in fact, upscaled and that adding a "true resolution" detector 
to CAE brings very appreciable savings in bandwidth, storage, and compute cost. 

. 
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Introduction 
In the modern world, we are witnessing continued evolution and increasingly hybrid operation of 
traditional/broadcast and OTT/streaming systems. Such co-existence often leads to complex 
distribution flows with many video transcoding and format conversion operations [1].  
For example, consider a hybrid broadcast + OTT distribution system presented in Figure 1.  

 
Figure 1. A hybrid video delivery system with multiple transcoding operations. 

As typical for broadcast systems, the incoming video feeds originate from remote and field 
production. A contribution encoder is employed at this stage. It converts video from camera-
native format to one required on ingest by the broadcast system. Then, once the content 
reaches the master control/playout system, it undergoes additional transformations. The playout 
system may add channel bugs, lower thirds, ad avails, etc. It may also mix content from different 
sources. Then, another encoder is employed to transmit streams from the broadcast system to 
an OTT delivery workflow. And then, within the OTT delivery system, another encoder produces 
outputs for DASH/HLS streaming distribution [2,3]. As easily observed, there are several 
transcoding operations involved. 
Each transcoding or editing operation may introduce changes in video formats. Furthermore, in 
some cases, such conversions may lower the effective "spatial density" of the content. 
Examples include video upscaling, SAR/DAR conversions, removal of black bars, etc. 
Conversions between interlaced and progressive formats may also involve upscaling, as with 
SD to HD format conversions. Table 1 lists several commonly used video formats, along with 
typical examples of conversion operations increasing the "declared resolutions" of the 
mezzanines. 
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Problems Presented by Upscaled Video Content 
When the final OTT/streaming transcoder receives the mezzanine content, it is generally 
unaware of any earlier conversion operations performed. It only sees the resolution and DAR or 
SAR as declared in the mezzanine metadata. Hence, if input content is upscaled, it becomes 
transcoded for delivery as is, producing outputs that may be suboptimal from a quality and 
efficiency standpoint. 
For example, if a 1080p asset becomes up-converted to 4K earlier in the workflow, it most likely 
will be transcoded as 4K content for delivery. Furthermore, with HLS/DASH streaming 
requirements, this will result in a ladder of 9-12 streams with intermediate resolutions to 4K. 
Such ABR encoding may easily double or even triple bandwidth and storage costs. But quality-
wise, if this was a 1080p stream initially, it won't look much better. The same experience can be 
delivered by a more compact 1080p ladder using much fewer bits.  
The described problem, unfortunately, is quite common in modern practice. As shown in 
Table 1, there are many standard format conversion operations producing upscaled outputs. 
With increasingly more complex media delivery workflows and additional encoding and format 
conversion operations introduced in practical systems, this problem becomes even more 
significant. 

Table 1. Standard video formats and possible up-conversion operations. 

Video format Width Height DAR1 SAR1 DAR2 SAR2 May be up-converted to 

SD 480i 

352 480i 4:3 20:11 16:9 80:33 

720p, 1080i, 1080p 

480 480i 4:3 4:3 16:9 16:9 
528 480i 4:3 40:33 16:9 160:99 
544* 480i 4:3 40:33 16:9 160:99 
640 480i 4:3 1:1 16:9 4:3 
704 480i 4:3 10:11 16:9 40:33 
720* 480i 4:3 10:11 16:9 40:33 

SD 576i 

352 576i 4:3 24:11 16:9 32:11 
480 576i 4:3 8:5 16:9 32:15 
544* 576i 4:3 11:12 16:9 64:33 
704 576i 4:3 12:11 16:9 16:11 
720* 576i 4:3 12:11 16:9 16:11 

 960 720 16:9 4:3   720p, 1080p 
1280 1080i 16:9 3:2   1080i, 1080p 

HD 720p 1280 720 16:9 1:1   
1080p, 4K HD/1080i 1440 1080i 16:9 4:3   

1920 1080i 16:9 1:1   
HD/1080p 1920 1080 16:9 1:1   4K 

Widescreen 
1080p, 2K 

1920 800 2.4:1 1:1   
1080p, 4K 1920 816 2.35:1 1:1   

2048 864 2.4:1 1:1   
2048 1080 17:1 1:1   4K 
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Related Prior Work 
Among related prior work, we must recognize several techniques that may be helpful. 
The first category comprises "per-title," "content-aware," and "context-aware" encoding (CAE) 
techniques [5-10]. Such techniques first analyse each incoming video asset and then decide 
how many bits to use to encode it most efficiently. In other words, instead of using a fixed 
ladder, as shown in Table 2, they generate a custom ladder for each input video. If the video is 
"simple" to encode, it receives fewer bits. If the video is "complex," more bits and possibly more 
streams may be generated. In the case of upscaled content, it is reasonable to expect at least 
the top few renditions (the ones with the highest resolutions) to become more compressible. 
Hence CAE could save some bits. But it won't trim the encoding profile or reduce the maximum 
resolution automatically. In other words, while CAE could lessen the inefficiency introduced by 
upscaling, it can't eliminate it 
The second category of techniques comprises video encoder-level optimizations, dynamically 
changing resolutions within the encoded streams. Such functionality is allowed in the latest 
codecs, such as VVC [11]. With older codecs, such as H.264 [12] and HEVC [13] it is also 
possible with HLS and appropriate support from HLS clients and decoders [14]. However, 
dynamic resolution changes are not always safe. For example, they may alter the artistic 
appearance of film grain, background textures, or other fine details. Dynamic resolution changes 
may also introduce an inconsistency in video appearance throughout playback. When working 
with previously upscaled content, such techniques could also help, but there is no guarantee 
that the resolutions they select dynamically on a segment-to-segment or frame-by-frame basis 
would match the original resolution of the content. They also will not affect the number of 
streams in the ABR encoding ladder. In other words, this class of techniques could also help, 
but only partially. 
Finally, the last category of relevant techniques includes "original resolution" or "true resolution" 
detectors [15-18]. These algorithms detect if a given image or video was previously upscaled. 
Their traditional uses include forensic analysis, restoration, and other applications [17]. But they 
come with some limitations. For example, the well-known A. C. Gallagher's method [15] only 
works well for cubic interpolation [16]. The normalized energy density technique [17] is also 
limited to classic reconstruction filters. The method utilizing the ratio of the low- and high-
frequency energy densities, proposed in [18], appears to be more general. It bounds the range 
of likely original resolutions. However, it does not strongly indicate that a particular sampling 
frequency is the best candidate. The method of detecting a "sharp decline" in the accumulated 
log-amplitude spectrum [19] is also more general. The authors in [19] report success in its 
application to modern super-resolution upscaling techniques [20-24]. However, as we observed 
in our experiments, none of these methods is perfect. They work in many cases but may also 
fail in some. Many are sensitive to noise and compression artifacts introduced by prior-
generation encoding.  
But in principle, we believe that techniques for detecting "original" or "true" resolution provide 
the right tools for addressing the described problem. We will utilize several of these techniques 
in our proposed solution. 
 



 

© 2023 Society of Motion Picture & Television Engineers® (SMPTE®)                                                                          5 
 

Proposed Solution 
We show the overall processing chain in our system in Figure 2.  

 
Figure 2. Overall processing chain in the proposed system. 

The primary operations are "true resolution" detection and a CAE encoding ladder generator 
[6,8]. In this work, we use the CAE tool provided by the Brightcove VideoCloud system [25,26]. 
Our resolution detector is aided by a codec noise analyser [27,28]. This analyser predicts the 
PSNR of the codec-introduced noise level in the encoded mezzanine we receive as input. 

Resolution Detection Algorithm 
Figure 3 shows the flow of operations within our detector. The candidate horizontal and vertical 
resolutions are detected separately, utilizing row and column data in each frame. In both cases, 
we turn data in the DFT domain [29], extract spectral features, and perform an initial selection of 
candidate resolutions in both directions. The choice of the best joint (horizontal, vertical) 
resolution pair follows as a final step. If the system finds no compelling candidate resolutions or 
cues that the video is upscaled, it reports the mezzanine resolution as "true resolution." 

 
Figure 3. Processing chain within the proposed resolution detector. 
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Frequency-Domain Processing 
Figure 4 explains DFT-domain parameters we use for detection. Parameter  𝑓𝑓𝑁𝑁 denotes the 
Nyquist frequency of the mezzanine sampled data. Parameter  𝑓𝑓𝑐𝑐 represents the "true 
resolution" frequency under the test. The shaded regions show amplitude spectrum parts before 
and after 𝑓𝑓𝑐𝑐. Integrals of squared amplitude spectrum (or "energies") below and after 𝑓𝑓𝑐𝑐 are 
denoted by 𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 and 𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐, respectively.  

 
Figure 4. Spectral features used by the resolution detector. 

The dotted line moving from the right shows potential overlap with an adjacent spectral image. 
This overlap is the cause of classic aliasing artifacts [29]. The so-called "post-aliasing" artifacts 
[30] also relate to the presence of the conjugate-symmetric spectral components coming from 
the adjacent spectral image. 
In theory, the ideal filter designs must eliminate both types of aliasing artifacts from signals. But 
none of the practical filter designs are achieving this objective. Furthermore, as explained 
in [30], some minor aliasing and post-aliasing artifacts are quite normal and acceptable in 
practice. We will use their presence as cues in our detector. 

To detect them in the vicinity of 𝑓𝑓𝑐𝑐, we use correlation metric: 

𝜌𝜌𝑓𝑓𝑐𝑐
∗ =

∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 − 𝑢𝑢] ⋅𝑢𝑢 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 + 𝑢𝑢]

�∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 − 𝑢𝑢]2𝑢𝑢 ⋅ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖[𝑓𝑓𝑐𝑐 + 𝑢𝑢]2𝑢𝑢
, 

where 𝑥𝑥𝑖𝑖𝑖𝑖[. ] are imaginary parts of the DFT spectral components. A Gaussian-smoothed 
window of +-32 spectral lines around 𝑓𝑓𝑐𝑐 is used for computing these quantities. We first compute 
such metrics for each line or column in a frame. We then aggregate the results for this frame 
and for the entire sequence. 
The other cue that we employ is a "sharp decline" effect discovered in [19]. Its presence relates 
to de-attenuation in transition bands of filters that may have been previously applied. In Figure 
4, we illustrate it by gap denoted 𝛿𝛿𝑓𝑓𝑐𝑐. We compute it as follows: 

𝛿𝛿𝑓𝑓𝑐𝑐 =
𝜆𝜆[𝑓𝑓𝑐𝑐]

median(𝜆𝜆[𝑓𝑓𝑐𝑐 − 𝑚𝑚], … , 𝜆𝜆[𝑓𝑓𝑐𝑐 + 𝑚𝑚]), 
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where 𝜆𝜆[. ] denote logarithm-domain amplitudes of spectral components averaged across the 
entire sequence [19]. The median(.) denotes the median filter. A +-32-point window around 𝑓𝑓𝑐𝑐 is 
used to compute this criterion. 
Both aliasing and shape decline criteria typically point to the same candidate frequency. But, in 
some rare cases, these detectors may disagree, show several candidates, or fail to detect any. 
To resolve such ambiguities and improve the robustness of our method in general, we must 
apply several additional constraints. For this purpose, we use signal energies in each band 
𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 and 𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐, as well as an estimate of codec-introduced noise as present in the mezzanine 
𝐸𝐸𝑁𝑁,𝑀𝑀𝑀𝑀𝑀𝑀.The first check compares the energy of the signal past 𝑓𝑓𝑐𝑐 to the mezzanine noise level: 

𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐 < 𝐶𝐶1 �
𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑐𝑐
𝑓𝑓𝑁𝑁

�𝐸𝐸𝑁𝑁,𝑀𝑀𝑀𝑀𝑀𝑀. 

The second check compares the energy of the signal past 𝑓𝑓𝑐𝑐 to the signal's energy: 

𝐸𝐸𝑓𝑓≥𝑓𝑓𝑐𝑐 < 𝐶𝐶2 ⋅  𝐸𝐸𝑓𝑓<𝑓𝑓𝑐𝑐 . 

Both tests ensure that the choice of 𝑓𝑓𝑐𝑐   as "true resolution" won't remove any meaningful signal 
components. The constants C1 and C2 are empirically chosen based on the corresponding 
bounds observed in a dataset of videos with various types of conversions and transcoding 
operations 

Final Checks and Resolution Selection 
The last block, shown in Figure 3, performs the final "true resolution" selection based on 
candidate frequencies supplied by horizontal and vertical detectors. This block applies a few 
additional rules, disqualifying impossible or highly improbable combinations based on SAR/DAR 
constraints, and selects a pair of horizontal + vertical resolutions to report. If none of the 
candidates pass final safety checks, the detector outputs full mezzanine resolution as a default 
choice. 

Example of Operation 
To show how the proposed design works, we will use a "Tears of Steel" sequence [31] coming 
in a wide-screen 1920x800 format, which we convert to 16:9 DAR by taking the midsection 
anscaling it up to 1080p. Therefore, this video's "true resolution" is only 1422.2 x 800 pixels. 
We then encode this video using: (1) a standard HLS ladder for H.264 and 16:9 content [4], (2) 
a ladder generated by Brightcove CAE [25], treating the input as 1080p, and (3) a ladder 
generated by Brightcove CAE with "true resolution" detection enabled. 
Tables 2-4 show the results. First columns list encoding ladder parameters: codec, profile, and 
resolution of each stream as encoded. Then we list "true width" and "true height," with resolution 
parameters clipped by the true resolution limits. Then we list encoding bitrates and SSIM quality 
values [32]. The final column lists the load probabilities of each rendition, retrieved by the 
Brightcove analytics system [26] after the playback. In the bottom lines, we report average 
bitrates, SSIM scores, and average resolution delivered to viewers during the playback. The 
storage values report the sums of bitrates of all renditions in each profile.  
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Tables 2 and 3 show improvements achieved by standard CAE vs. HLS reference profile. We 
observe that average bitrates went down to 3386 kbps from 5705 kbps, storage is now 7912 
kbps vs. 25640 kbps, and the number of streams is 6 vs. 9 initially—very significant 
improvements in all domains.  
Table 2 – Encoding and streaming statistics for HLS reference encoding ladder [4]. 
Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 416 234 416 234 145 0.9390 0.0049 
2 h264 High 640 360 640 360 365 0.9604 0.0050 
3 h264 High 768 432 768 432 730 0.9739 0.0076 
4 h264 High 768 432 768 432 1100 0.9817 0.0336 
5 h264 High 960 540 960 540 2000 0.9858 0.0710 
6 h264 High 1280 720 1280 720 3000 0.9860 0.1261 
7 h264 High 1280 720 1280 720 4500 0.9898 0.1298 
8 h264 High 1920 1080 1422 800 6000 0.9874 0.1557 
9 h264 High 1920 1080 1422 800 7800 0.9896 0.4586 
Average 

  
 

 
1316 740 5705 0.9878 

 

Storage 
  

 
  

 25640 
  

Table 3 – Encoding and streaming statistics for CAE [25] 
Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 384 216 384 216 145 0.9421 0.0032 
2 h264 High 512 288 512 288 267 0.9572 0.0039 
3 h264 High 768 432 768 432 534 0.9656 0.0096 
4 h264 High 1024 576 1024 576 1068 0.9745 0.0426 
5 h264 High 1600 900 1422 800 2136 0.9773 0.1245 
6 h264 High 1920 1080 1422 800 3763 0.9823 0.8084 
Average 

   
 1392 783 3386 0.9810 

 

Storage 
   

 
 

 7912 
  

Table 4 – Encoding and streaming statistics for CAE with true resolution detection 
Rendition Codec Profile Width Height True Width True Height Bitrate [kbps] SSIM Pr 
1 h264 High 384 216 384 216 145 0.9421 0.0030 
2 h264 High 512 288 512 288 257 0.9556 0.0036 
3 h264 High 768 432 768 432 488 0.9627 0.0082 
4 h264 High 1024 576 1024 576 977 0.9720 0.0198 
5 h264 High 1280 720 1280 720 1667 0.9769 0.0594 
6 h264 High 1440 810 1422 800 2625 0.9815 0.8984 
Average 

   
 1394 784 2502 0.9806 

 

Storage 
   

 
 

 6159 
  

Table 4 shows additional improvements delivered by CAE with the "true resolution" detection 
method enabled. We note that the average bitrate is now 2502 kbps vs. 3386 kbps, an extra 
26.1% saving in bandwidth, and that overall storage is now 6159 kbps vs. 7912 kbps, a saving 
of 22.1%. The SSIM statistics are similar to the standard CAE. And yet, we also note that the 
average effective resolution as delivered is now 1394x784 vs.1392x783 – another slight 
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improvement. The "true resolution" detection has worked – the top rendition resolution is now 
1440x810 (a rounded-up 1422x800), enabling all mentioned improvements 

Experimental Study 
Finally, in this section, we present the results of an experimental study assessing the effects of 
CAE and CAE with "true resolution" detection on the efficiency of streaming systems. 
Table 5 – HLS reference encoding vs. CAE and vs. CAE with true resolution detection. 
Content Category Renditions Storage [kbps] Bandwidth [kbps] 

Ref. CAE CAE+TR Ref. CAE CAE+TR Ref. CAE CAE+TR 
Action 9.00 6.08 6.08 24361 8221 7890 5420 3477 3319 
Adventure 9.00 6.17 6.17 25803 8964 8602 5741 3648 3516 
Baseball 7.00 5.12 5.00 11477 4389 3631 3823 2086 1739 
Basketball 8.61 6.06 5.76 23684 8036 5753 5530 3441 2513 
Beach Volleyball 9.00 6.91 6.21 25858 12004 8432 5753 4506 3538 
Boxing 9.00 6.00 6.00 25588 7590 6388 5693 3225 2622 
Cartoon 9.00 5.84 5.70 25256 6690 5791 5619 2923 2545 
Comedy 9.00 6.26 6.26 26655 9081 8700 5931 3516 3389 
Cricket 7.00 5.00 4.32 12222 3231 2578 4072 1470 1296 
Cycling 9.00 6.00 5.96 26272 8036 6805 6146 3289 2757 
Documentary 9.00 6.50 6.47 24804 10226 9886 5519 3935 3787 
Drama 9.00 6.17 6.17 26560 8492 8188 5910 3498 3362 
Field Hockey 9.00 6.92 6.55 26180 11478 9808 5825 4242 3816 
Football 7.45 4.67 4.67 14964 4055 3302 4346 1578 1375 
Game Show 9.00 6.20 5.89 25137 8615 7870 5593 3566 3374 
Gymnastics 9.00 6.00 6.00 24396 7111 6428 5707 2902 2902 
Interview 7.07 4.40 4.05 11794 2591 2042 3839 1224 1003 
Kids Channel 9.00 6.31 6.24 25292 9521 9141 5628 3829 3650 
Late night show 9.00 6.28 5.50 24736 8722 6918 5786 3530 2923 
Mixed Sports 9.00 6.84 6.74 24783 12260 11683 5514 4472 4328 
News 9.00 6.51 6.23 26893 10038 9088 6291 3869 3666 
Reality 9.00 6.50 6.43 25501 10044 9567 5674 3907 3760 
Running 9.00 6.37 6.00 24663 9291 7352 5488 3828 3197 
Scifi 9.00 6.18 6.12 24370 8933 8457 5422 3670 3519 
Sitcom 9.00 5.99 5.98 24381 7284 6773 5425 3061 2863 
Soap 9.00 6.14 6.03 25327 8185 7684 5635 3394 3239 
Squash 9.00 6.00 6.00 25721 6990 6247 5723 3030 2711 
Swimming 9.00 7.00 7.00 25823 13874 12993 5746 4784 4614 
Tennis 7.00 5.00 5.00 11961 3553 3047 3984 1711 1450 
Weightlifting 9.00 5.90 5.71 25915 6085 5165 5766 2616 2257 
Overall 8.67 6.04 5.87 23212 8119 7206 5418 3274 2967 
CAE vs Ref [%] 

 
-30.30 -32.25 

 
-65.02 -68.95 

 
-39.57 -45.23 

CAE+TR vs CAE [%] 
  

-2.81 
  

-11.25 
  

-9.38 
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To perform this study, we used a corpus of 500 video assets, with a combined duration of over 
120 hours, representing 33 different content categories, such as action movies, sports, 
documentaries, etc. 
All these assets were real-world 1080p and 720p mezzanines sampled from existing OTT 
distribution workflows. Each video was subsequently encoded using three encoding profiles 
(HLS reference [4], CAE, and CAE with enabled "true resolution" detection (CAE+TR). Then we 
instrumented players to play the content and collected the playback statistics. 
Table 5 presents the results. The top rows present performance statistics as observed for each 
content category. The last three rows show the overall statistics across all categories, the relative 
savings delivered by CAE vs. reference profile, and the CAE + true resolution vs. standard CAE.  
As can be observed, CAE-delivered savings are very significant. Overall, we note an almost 40% 
savings in bandwidth and about 65% savings in storage compared to the reference HLS profile 
over this test set.  
However, the savings are even higher with "true resolution" detection. We observe that, on 
average, "true resolution" detection brings about 9.38% extra savings in bandwidth relative to 
the standard CAE. In terms of storage, the additional savings are 11.25%. There is also a 
2.81% reduction in the number of encoded streams. On a per-category basis, we observe even 
higher savings. For example, we notice 26.97% savings in bandwidth and 28.41% in storage for 
basketball content. These are significant savings realized by using a sample of real-world media 
content. 

Conclusions 
We have discussed the problems posed by up-converted media content for video streaming 
applications. We have explained the origins of this problem, surveyed several existing tools and 
techniques that may be useful for addressing it, and proposed a method integrating them into a 
practical and easily deployable solution. 
The presented experimental results indicate that the proposed solution is effective. Using a 
dataset with real-world mezzanines, we observed average bandwidth savings of approximately 
9.38% and storage savings of 11.25%. Across different content categories, we noted that the 
savings are approaching 26.97% and 28.41% in bandwidth and storage usage, respectively.  
We find these results both encouraging and alarming. On the one hand, they show that our 
proposed tool works and is effective. But on the other, they also indicate that a significant 
percentage of videos as distributed OTT today are, in fact, upscaled. 
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