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Introduction

 I 
  n the past few years, the video streaming industry 
has seen immense interest in low-latency streaming 
protocols, targeting about 5-sec end-to-end delay, 
comparable with the delay in live broadcast TV

systems. Attaining such low delay is considered criti-
cal for streaming live sports, gaming, online learning, 
interactive video applications, and so on.

As is well known, the delay in the conventional live 
streaming technologies such as Hypertext Transfer Pro-
tocol (HTTP) Live Streaming (HLS)1 and Dynamic 
Adaptive Streaming over HTTP (DASH)2 is much 

longer. It is caused by rela-
tively long (4–10 sec) segments 
and a segment-based delivery 
model, requiring complete 
delivery of each media segment 
before playback. Combined 
with buffering strategies used 
by the HLS or DASH stream-
ing clients, this typically pro-
duces delays of 10–30 sec, or 
even longer.

Low-Latency HLS (LL-
HLS)3,4 and Low-Latency 
DASH (LL-DASH)2,5,6 are the 
recent evolutions of the HLS 
and DASH standards, designed 
to reduce latency. They employ 
a new encoding and transmis-
sion process, effectively split-
ting each segment into several 

(typically 4–10) chunks and then using such “chunks” 
for transmission. Since each “chunk” is significantly 
shorter than a segment, this reduces the delay in the 
streaming system. 

Several existing implementations of streaming play-
ers, encoding, and packaging tools support LL-DASH 
and LL-HLS technologies. The available player imple-
mentations include Apple’s AVPlayer,7 HLS.js,8 Shaka 
player,9 and DASH.js,10 as well as modifications of 
DASH.js, including machine learning-based adap-
tation methods such as Low on Latency (LoL)11 and 
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Learn2Adapt-LowLatency (L2ALL).12 The available 
encoding and packaging tools include Apple’s HLS 
reference tools,13 FFmpeg,14 node-gpac-dash,15 and 
others. Many of these technologies have demonstrated 
lower streaming delay and promising performance when 
operated over high-speed network connections or tested 
using simple in-browser bandwidth throttling tools.11,12 
However, the actual performance of such systems under 
more challenging and more realistic deployment envi-
ronments has not (to the best of authors’ knowledge) 
been well-studied yet.

This article aims to perform a practical evaluation 
and comparison of such available implementations of 
LL-HLS and LL-DASH players and systems in more 
realistic and challenging environments, such as delivery 
over mobile networks. 

Related Work and Adopted Evaluation 
Methodology
The operation under unknown or changing network 
conditions has been one of the most fundamental 
challenges that adaptive bitrate (ABR) streaming sys-
tems have been trying to solve since their birth in the 
1990s.16–18 This challenge still exists today, although in 
a somewhat simplified setting, allowed by using HTTP-
based Adaptive Streaming (HAS) architectures.1–3,19 In 
such architectures, the network adaptation logic resides 
in streaming clients, effectively driving the selection 
and loading of segments of media streams.

In the past decade, many methods have been proposed 
for the design of stream selection algorithms. These 
include throughput-based methods,20,21 buffer-level-
based heuristics,22–25 control-theoretic approaches,26,27 
as well as machine-learning algorithms.11,12 However, 
the methodologies used by different researchers for 
comparison of such bandwidth adaptation algorithms 
have varied, and in some cases, employed very basic 
bandwidth throttling tools in web browsers. Such tools 
can only control video players’ download bandwidth 
at the application layer and have no means for accu-
rately simulating highly fluctuating network bandwidth 
changes or packet loss statistics present, for example, in 
mobile networks.

References 28–33 proposed testbeds/frameworks for 
evaluating video streaming quality of experience (QoE) 
using real networks or fine-controlled network links 
to evaluate HAS systems. For instance, Talon et al.28 
have implemented several HAS players and assessed 
them in a campus network from different performance 
perspectives. Ayad et al.31 took a similar approach and 
conducted a practical and in-depth evaluation of HAS 
players. Notably, Ayad et al.31 have built an experimen-
tal framework emulating wired network links using 
Netem and Linux traffic control (TC). Their experi-
ments and code-level analysis revealed how different 
HAS players operate in detail. This study was limited 

to the use of wired networks, however. Midoglu et al.,32 
Taraghi et al.,33 and Zabrovskiy et al.34 – have proposed 
a framework for automating video streaming testing 
and QoE evaluation. The framework integrates with the 
Mobile Broadband Networks in Europe (MONROE) 
project. The players run in docker containers with man-
aged network connections and the environment meta-
data collection functionalities built into MONROE 
nodes. The framework enables running experiments 
on a cloud infrastructure. These proposed frameworks, 
however, focus more on automation and simplification 
of player evaluation, but they do not ensure a fair com-
parison of different players because there is no guaran-
tee that different players experience the same network 
conditions. Raca et al.30 have proposed DASHbed, a 
framework for simulating large-scale empirical evalu-
ation of DASH players. However, the mobile network 
traces it relies upon35 have limited sampling granularity 
and thus do not capture the essential fine-grain dynam-
ics of such networks. Additional related studies can be 
found in Refs. 36–42.

To ensure a more accurate and fair evaluation of 
different players, in this article, we introduce a cus-
tom-built evaluation framework incorporating the 
Mahimahi network emulator.43–46 Our framework guar-
antees a fair comparison of different players by replay-
ing the same network traces across playback sessions. 
Such an approach allows us to compare multiple play-
ers side by side under the same network condition. The 
Mahimahi network simulator can accurately emulate 
mobile network links using the physical network traces 
recorded from different mobile operators. Specifically, 
we will use network traces from T-Mobile and Verizon 
4G LTE networks.43

Experimental Setup 
In this section, we describe the overall setup of our 
experiments, including encoding and packaging 
toolchains. 

The overall diagrams of our systems built for LL-
HLS and LL-DASH streaming appear in the left and 
right subfigures of Fig. 1. To generate LL-HLS streams, 
we used Apple’s HLS reference tools13 and FFmpeg.14 
To generate LL-DASH streams, we used Open Broad-
cast Software (OBS) studio,47 FFmpeg,14 and node-
gpac-dash.15 Additional details about our setups can be 
found in Refs. 48–49. The LL-HLS stream was served 
dynamically by the Nginx web server.50 The LL-DASH 
stream was served dynamically by node-gpac-dash.15 

As shown in Fig. 1, the encoded input video streams 
are subsequently processed by the low-latency packag-
ers (mediastreamsegmenter13 for LL-HLS, and FFm-
peg14 for LL-DASH). The outputs of low-latency 
packagers are the chunked video segments and mani-
fest files informing the players on how to consume 
the streams in low-latency mode. Next, the output 
stream files are served by the low-latency media servers 
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LL-HLS.13 The same encoding profile parameters have 
been used for the generation of both LL-DASH and 
LL-HLS streams.

The overall session duration that we used to test each 
player’s performance under each network was 10 min-
utes. Given selected chunk and fragment durations, this 
has allowed about 600 chunks or equivalently 150 seg-
ments to be downloaded per session.

We have evaluated six implementations of low-latency 
streaming players. For LL-HLS, we used Apple’s 
AVPlayer,7 HLS.js,8 and Shaka player.9 For LL-DASH, 
we used Dash.js with three different low-latency ABR 
algorithms: 1) Dash.js original,10 2) Dash.js with LoL 
algorithm,11 and 3) Dash.js with L2ALL algorithm.12 
We have implemented simple test applications for all 
the players. The applications were built using the lat-
est player Software Development Kit (SDK) releases as 
available in December 2020.

The reporting of metrics indicative of live stream-
ing latency, playback speed, and rebuffering events has 
been instrumented in the video player applications. 
Other metrics such as stream bitrate, video resolution, 
and media data downloaded have been derived from the 
streaming servers’ access logs. The processing of all col-
lected metrics was done offline. 

The player’s streaming latency was calculated by 
following the method described in Ref. 6, which is 

(lowLatencyHLS.php13 for LL-HLS, node-gpac-dash15 
for LL-DASH) to players in a chunked manner. On the 
player side, the web-based players run on the Chrome 
web browser, and the iOS native player (HLS) runs on 
the AVPlayer framework on iOS. The Chrome browser 
and the AVPlayer run inside the Mahimahi container43 
and connect to the media server via an emulated virtual 
network interface.

As a test video sequence, we used a 1080p/30 
frames/sec version of the Big Buck Bunny video.51 This 
sequence is sufficiently long and exhibits a broad range 
of spatial and temporal statistics, making it a popular 
choice for testing video applications. To enable con-
tinuous live streaming, this sequence was looped by 
FFmpeg. For adaptive streaming, this sequence was 
transcoded into three variant streams with parameters 
listed in Table 1. The resolution and bitrate parameters 
have been selected for this video by using the Brightcove 
Context Aware Encoding tool.52–54 The top bitrate was 
limited to match bitrates attainable by mobile networks. 

To minimize fluctuations of encoding bitrates from 
their declared targets, a constant bitrate (CBR) encod-
ing mode has been utilized. H.264 encoder operating in 
Baseline profile has been used. Lookahead processing 
is disabled. The segment lengths and fragment dura-
tions were set to 4 and 1 sec, respectively, matching 
the default values used in Apple’s streaming tools for 

FIGURE 1. Architectures LL-HLS (left) and LL-DASH (right) streaming systems used for testing.

Table 1. Encoding profile parameters used for both LL-HLS and  
LL-DASH systems.

Parameter Rendition 1 Rendition 2 Rendition 3

Bitrate (kbits/s) 279 925 1,253

Frame rate (frames/sec) 30 30 30

Video resolution (pixels) 320 × 180 640 × 360 768 × 432

Seg. duration (sec) 4 4 4

Chunk duration (sec) 1 1 1

Video codec H.264 H.264 H.264

Video codec profile Baseline Baseline Baseline

Media format ISOBMFF ISOBMFF ISOBMFF

http://HLS.js
http://Dash.js
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common for both LL-DASH and LL-HLS. Essentially, 
at any time point, we take the difference between the 
elapsed presentation time and the elapsed wall clock 
time, from the beginning of a streaming session

  PL = (WC – WCA) − (PT – PTA)/TS (1)

where PL represents the live presentation latency, and 
WC and PT represent the current wall-clock time and 
the current presentation time, respectively. WCA and 
PTA represent the beginning wall-clock time and the 
beginning presentation time, respectively. TS repre-
sents the timescale used for reporting presentation time.

For LL-DASH, the above values have been obtained 
from the ProducerReferenceTime6 element embedded 
in a media presentation description (MPD) file, and 
W3C HTML5 video currentTime application pro-
gramming interface (API),55 and/or a DASH-MPD file. 
For LL-HLS, these values have been derived from the 
HLS m3u8 file and currentTime API. 

The number of rebuffering events and the players’ 
playback speed have been obtained by using the waiting 
event API55 and the playbackRate API,55 respectively. 

The playback speed variation was calculated as the 
Euclidean distance of all the measured playback speeds 
relative to the native speed (which equals 1)

   playbackSpeedVariation = 1n∑i = 1Nsi − 12 (2)

parameter N used in this formula denotes the number 
of playback speed measurements conducted during 
the session. All other metrics including stream bitrate, 
video resolution, media data downloaded, and a num-
ber of bitrate switches have been derived from the server 
logs. The full list of metrics collected in our test system 
is summarized in Table 2.

We used the Mahimahi network emulator43 to emu-
late network conditions at the network interface level. 
Mahimahi is essentially a Linux container that can 
run an application inside of it. An application inside 
Mahimahi connects to the outside world through a 
virtual network interface that sends and receives bytes 
according to the running downlink and uplink traces. 
This way, the capacity of the network interface is lim-
ited by the running trace. We used traces that have been 
recorded from real-world mobile networks. When we 
run the test players inside Mahimahi, the player down-
load speed is limited by the capacity of the virtual inter-
face. Unlike using bandwidth throttling features in web 
browsers, Mahimahi provides more faithful network 
emulation by using real-world traces and throttling 
bandwidth at the network interface level. Additionally, 
the same network traces are replayed for all the test ses-
sions. This allows a fair and realistic comparison of dif-
ferent players. 

We have evaluated LL-HLS and LL-DASH play-
ers using two 4G-LTE network traces from T-Mobile 

Table 2. Performance metrics collected in 
our experiments.

Metrics Impact domain(s)

Streaming bitrate (kbits/s) Efficiency, QoE

Video resolution (height) QoE

Streaming latency (sec) Latency, QoE

Variation of playback speed QoE

Frequency of stream switches QoE

Frequency of rebuffering events QoE

Downloaded media data (Mbytes) Efficiency

Media objects (chunks or segments) 
downloaded

Efficiency

FIGURE 2. Visualizations of network bandwidth traces used for tests.

Table 3. Bandwidth statistics of network 
traces used for tests.

Bandwidth statistics   T-Mobile     Verizon  

Average bitrate (kbits/s) 12,258 10,565

St. deviation of bitrate (kbits/s)   9,314 8,619

Minimum bitrate (kbits/s) 12 12

Maximum bitrate (kbits/s) 59,460 42,804
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and Verizon, respectively.43 We provide visualizations of 
these traces in Fig. 2. In Table 3, we list several basic 
statistics associated with them. 

We note that the traces that we have selected for test-
ing are pretty challenging, capturing situations with 
mobile handoffs and other forms of impairments that 
may happen in practice. In fact, with the selected traces, 
we should expect streaming players to enter a buffering 
state at least once or twice throughout the session. On 
the other hand, we also note that the effective average 
bitrate supported by both networks is higher than the 
bitrate used by the top rendition in our encoding pro-
files. This should enable players to use all renditions for 
network adaptation. 

Results
In this section, we present the results of our tests of LL-
DASH and LL-HLS systems using different networks.

Results for Tests Using Verizon 4G LTE Network
First, we review the results obtained by using traces 
of the Verizon 4G LTE network. Table 4 offers sum-
mary metrics. Figure 3 shows the dynamics of bitrate 
changes in LL-HLS and LL-DASH systems. Figure 4 
shows the dynamics of playback latencies achieved by 
both systems. 

Based on Table 4 and Fig. 4, we first note that the laten-
cies achieved by LL-DASH players and their variations 

were considerably lower than the ones achieved by LL-
HLS. Except for a couple of segments where bandwidth 
drops significantly, the latencies of LL-DASH players have 
been in the range of 3-4 sec. Among LL-HLS players, only 
the Shaka player was able to stay at latency in the range of 
7-9 sec. The HLS.js has also tried to keep latency low, but 
runs in a large number of buffering events as a result. The 
AVplayer’s behavior was interesting: it started to operate in 
about 4-sec latency mode, but then, by the middle of the 
session, it increased latency to 12 sec, and then increased it 
again to 16 sec, and never recovered to a low-latency mode. 

In terms of playback stability/prevention of rebuff-
ering events, we noted that AVplayer was most robust 
among LL-HLS players, and DASH.js among LL-
DASH players. AVplayer buffered only two times, while 
DASH.js buffered five times. But we also noticed that 
many players have been switching across streams very 
often. For example, AVplayer has made 130 switches in 
600 sec—a long session. A switch at almost every seg-
ment boundary. 

In terms of data usage and the ability to deliver high-
resolution videos, we noted that DASH.js was the best 
among LL-DASH systems, and Shaka player was the 
best among LL-HLS. AVplayer was a close next. The 
average consumed bitrate and resolutions delivered 
by the best players for LL-HLS and LL-DASH sys-
tems were comparable. But we also noted the number 

FIGURE 3. Bitrate variation over time—Verizon 4G LTE.

Table 4. Summary of performance metrics obtained for Verizon 4G LTE network.
Metrics LL-HLS players LL-DASH players

HLS.js Shaka AVplayer DASH.js LoL L2ALL

Avg. bitrate (kbits/s) 849 1,228 1,136 1,165 595 1,073

Avg. height (pixels) 328 426 404 410 262 387

Avg. latency (sec) 4.32 7.28 15.96 3.71 3.2 3.9

Var. playback speed 3.97 0 0 0.19 0.39 0.44

# of switches 48 2 130 6 29 3

# of rebufferings 36 12 2 5 79 56

Downloaded Mbits/s 85 90 99 88 45 81

Downloaded objects 
(chunks + segments) 

673 
(662 + 11)

587 
(587 + 0)

669 
(611 + 58)

152 151 152
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of objects (chunks or whole segments) downloaded by 
LL-HLS systems was significantly higher than in LL-
DASH. This relates to the differences in the implemen-
tation of transfer protocols employed by both systems. 

Results for Tests Using T-Mobile 4G LTE Network
First, we review the results obtained by using traces of 
the T-Mobile 4G LTE network. Table 5 offers summary 
metrics. Figure 5 shows the dynamics of bitrate changes 
in LL-HLS and LL-DASH systems. Figure 6 shows the 
dynamics of playback latencies achieved by both systems. 

In the above table and plots, we notice many of the 
same effects as we reported earlier. LL-DASH players 

deliver lower latency, with much lower variation among 
player implementations. The AVplayer starts in low-
latency mode but then increases latency by the end of 
the session. The AVplayer and DASH.js are the best in 
terms of buffering. While overall network conditions, in 
this case, appear to be better, most players still perform a 
high number of switches and run into at least one buffer-
ing situation. The observations regarding data loads are 
the same as reported earlier. 

Conclusion
In this study, we evaluated the LL-HLS and LL-DASH 
streaming systems under identical network conditions 

FIGURE 5. Bitrate variation over time—T-Mobile 4G LTE.

Table 5. Summary of performance metrics obtained for T-Mobile 4G LTE network.
Metrics LL-HLS players LL-DASH players

HLS.js Shaka AVplayer DASH.js LoL L2ALL

Avg. bitrate (kbits/s) 783 1,043 1,037 1,225 537 1,251

Avg. height (pixels) 311 378 378 426 248 432

Avg. latency (sec) 5.82 4.48 7.78 3.06 1.78 2.28

Var. playback speed 3.62 0 0 0.23 1.62 0.42

# of switches 50 8 72 4 28 0

# of rebufferings 43 18 1 1 69 13

Downloaded Mits/s 156 81 92 93 42 94

Downloaded objects 
(chunks + segments) 

965
(743 + 222)

621
(621 + 0)

703
(698 + 5)

151 152 151

FIGURE 4. Latency variation over time—Verizon 4G LTE.

http://DASH.js
http://HLS.js
http://DASH.js


32      SMPTE Motion Imaging Journal   |   August 2022

and by using several available implementations of 
streaming players for both systems. 

Based on our experiments, we confirmed that both 
LL-HLS and LL-DASH can deliver significantly lower 
latencies compared to the traditional HLS and DASH 
streaming systems. Specifically, for LL-DASH players, 
we observed latencies in the range of 3-4 sec, except for a 
few segments when bandwidth was insufficient to main-
tain live playback. For LL-HLS players, we observed a 
broader variation in streaming latencies across different 
player implementations, but with most data points fitting 
in the 4-10 sec range. 

However, we also noticed that in trying to maintain 
such a low delay, both LL-DASH and LL-HLS players 
frequently make decisions impacting the QoE in many 
other dimensions. Such observed effects include:
	■ high stream switching and buffering rates;
	■ the inability of some players to select high renditions;
	■ the inability of some players to maintain playback speed;
	■ more requests sent to the CDNs (particularly for LL-

HLS); and
	■ the inability of some players to maintain low delay.

Based on these observations, we believe that while 
promising, both LL-HLS and LL-DASH systems still 
have some room for improvement. This is especially 
true when operating under challenging network condi-
tions, such as mobile networks with significant load, 
handoffs, poor connectivity, and other effects occur-
ring in practice. What is most needed is an additional 
tuning of the player’s ABR rate selection algorithms. 
They need to be made more robust. However, with 
much work in this direction already ongoing, includ-
ing trying advanced machine-learning-based rate 
selection techniques (Refs. 10–12), we hope that these 
technologies will soon mature and will be ready for 
deployment at scale. 
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