
26 SMPTE Motion Imaging Journal | August 2022 1545-0279/22©2022SMPTE

TECHNICAL PAPER

Introduction

 I
 � n the past few years, the video streaming industry
has seen immense interest in low-latency streaming
protocols, targeting about 5-sec end-to-end delay,
comparable with the delay in live broadcast TV

systems. Attaining such low delay is considered criti-
cal for streaming live sports, gaming, online learning,
interactive video applications, and so on.

As is well known, the delay in the conventional live
streaming technologies such as Hypertext Transfer Pro-
tocol (HTTP) Live Streaming (HLS)1 and Dynamic
Adaptive Streaming over HTTP (DASH)2 is much

longer. It is caused by rela-
tively long (4–10 sec) segments
and a segment-based delivery
model, requiring complete
delivery of each media segment
before playback. Combined
with buffering strategies used
by the HLS or DASH stream-
ing clients, this typically pro-
duces delays of 10–30 sec, or
even longer.

Low-Latency HLS (LL-
HLS)3,4 and Low-Latency
DASH (LL-DASH)2,5,6 are the
recent evolutions of the HLS
and DASH standards, designed
to reduce latency. They employ
a new encoding and transmis-
sion process, effectively split-
ting each segment into several

(typically 4–10) chunks and then using such “chunks”
for transmission. Since each “chunk” is significantly
shorter than a segment, this reduces the delay in the
streaming system.

Several existing implementations of streaming play-
ers, encoding, and packaging tools support LL-DASH
and LL-HLS technologies. The available player imple-
mentations include Apple’s AVPlayer,7 HLS.js,8 Shaka
player,9 and DASH.js,10 as well as modifications of
DASH.js, including machine learning-based adap-
tation methods such as Low on Latency (LoL)11 and

Abstract
Reducing end-to-end streaming latency is critical to Hypertext
Transfer Protocol (HTTP)-based live video streaming. There
are currently two technologies in this domain: 1) Low-Latency
HTTP Live Streaming (LL-HLS) and 2) Low-Latency
Dynamic Adaptive Streaming over HTTP (LL-DASH). The
latter is sometimes also referred to as Low-Latency Common
Media Application Format (LL-CMAF), but effectively it
is the same architecture. Several existing implementations of
streaming players, as well as encoding and packaging tools, sup-
port both technologies. Well-known examples include Apple’s
AVplayer, Shaka player, HLS.js,
DASH.js, FFmpeg, and so on. In
this article, we conduct a perfor-
mance analysis of such stream-
ing systems. We perform a series
of live streaming experiments,
repeated using identical video con-
tent, encoders, encoding profiles,
and network conditions, emulated
by using traces of 4G LTE mobile
networks from two major operators.
We capture several performance
metrics, such as average stream
bitrate, the amounts of downloaded
media data, streaming latency,
buffering, frequency of stream
switching, and so on. Subsequently,
we analyze the captured data and
describe the observed differences in the performance of LL-HLS
and LL-DASH-based systems.

Keywords
Dynamic Adaptive Streaming over HTTP (DASH), Hypertext
Transfer Protocol (HTTP) Adaptive Streaming, HTTP Live
Streaming (HLS), low-latency live streaming, performance
evaluation, video players

Digital Object Identifier 10.5594/JMI.2022.3180777
Date of publication: 5 August 2022

Performance of Low-Latency DASH and HLS
Streaming in Mobile Networks
By Bo Zhang, Thiago Teixeira, and Yuriy Reznik

Low-Latency HLS (LL-HLS) and Low-
Latency DASH (LL-DASH) are the
recent evolutions of the HLS and DASH
standards, designed to reduce latency.
They employ a new encoding and
transmission process, effectively
splitting each segment into several
(typically 4–10) chunks and then using
such “chunks” for transmission. Since
each “chunk” is significantly shorter
than a segment, this reduces the delay
in the streaming system.

http://HLS.js
http://DASH.js
http://DASH.js
http://HLS.js
http://DASH.js

August 2022 | SMPTE Motion Imaging Journal 27

Learn2Adapt-LowLatency (L2ALL).12 The available
encoding and packaging tools include Apple’s HLS
reference tools,13 FFmpeg,14 node-gpac-dash,15 and
others. Many of these technologies have demonstrated
lower streaming delay and promising performance when
operated over high-speed network connections or tested
using simple in-browser bandwidth throttling tools.11,12
However, the actual performance of such systems under
more challenging and more realistic deployment envi-
ronments has not (to the best of authors’ knowledge)
been well-studied yet.

This article aims to perform a practical evaluation
and comparison of such available implementations of
LL-HLS and LL-DASH players and systems in more
realistic and challenging environments, such as delivery
over mobile networks.

Related Work and Adopted Evaluation
Methodology
The operation under unknown or changing network
conditions has been one of the most fundamental
challenges that adaptive bitrate (ABR) streaming sys-
tems have been trying to solve since their birth in the
1990s.16–18 This challenge still exists today, although in
a somewhat simplified setting, allowed by using HTTP-
based Adaptive Streaming (HAS) architectures.1–3,19 In
such architectures, the network adaptation logic resides
in streaming clients, effectively driving the selection
and loading of segments of media streams.

In the past decade, many methods have been proposed
for the design of stream selection algorithms. These
include throughput-based methods,20,21 buffer-level-
based heuristics,22–25 control-theoretic approaches,26,27
as well as machine-learning algorithms.11,12 However,
the methodologies used by different researchers for
comparison of such bandwidth adaptation algorithms
have varied, and in some cases, employed very basic
bandwidth throttling tools in web browsers. Such tools
can only control video players’ download bandwidth
at the application layer and have no means for accu-
rately simulating highly fluctuating network bandwidth
changes or packet loss statistics present, for example, in
mobile networks.

References 28–33 proposed testbeds/frameworks for
evaluating video streaming quality of experience (QoE)
using real networks or fine-controlled network links
to evaluate HAS systems. For instance, Talon et al.28
have implemented several HAS players and assessed
them in a campus network from different performance
perspectives. Ayad et al.31 took a similar approach and
conducted a practical and in-depth evaluation of HAS
players. Notably, Ayad et al.31 have built an experimen-
tal framework emulating wired network links using
Netem and Linux traffic control (TC). Their experi-
ments and code-level analysis revealed how different
HAS players operate in detail. This study was limited

to the use of wired networks, however. Midoglu et al.,32
Taraghi et al.,33 and Zabrovskiy et al.34 – have proposed
a framework for automating video streaming testing
and QoE evaluation. The framework integrates with the
Mobile Broadband Networks in Europe (MONROE)
project. The players run in docker containers with man-
aged network connections and the environment meta-
data collection functionalities built into MONROE
nodes. The framework enables running experiments
on a cloud infrastructure. These proposed frameworks,
however, focus more on automation and simplification
of player evaluation, but they do not ensure a fair com-
parison of different players because there is no guaran-
tee that different players experience the same network
conditions. Raca et al.30 have proposed DASHbed, a
framework for simulating large-scale empirical evalu-
ation of DASH players. However, the mobile network
traces it relies upon35 have limited sampling granularity
and thus do not capture the essential fine-grain dynam-
ics of such networks. Additional related studies can be
found in Refs. 36–42.

To ensure a more accurate and fair evaluation of
different players, in this article, we introduce a cus-
tom-built evaluation framework incorporating the
Mahimahi network emulator.43–46 Our framework guar-
antees a fair comparison of different players by replay-
ing the same network traces across playback sessions.
Such an approach allows us to compare multiple play-
ers side by side under the same network condition. The
Mahimahi network simulator can accurately emulate
mobile network links using the physical network traces
recorded from different mobile operators. Specifically,
we will use network traces from T-Mobile and Verizon
4G LTE networks.43

Experimental Setup
In this section, we describe the overall setup of our
experiments, including encoding and packaging
toolchains.

The overall diagrams of our systems built for LL-
HLS and LL-DASH streaming appear in the left and
right subfigures of Fig. 1. To generate LL-HLS streams,
we used Apple’s HLS reference tools13 and FFmpeg.14
To generate LL-DASH streams, we used Open Broad-
cast Software (OBS) studio,47 FFmpeg,14 and node-
gpac-dash.15 Additional details about our setups can be
found in Refs. 48–49. The LL-HLS stream was served
dynamically by the Nginx web server.50 The LL-DASH
stream was served dynamically by node-gpac-dash.15

As shown in Fig. 1, the encoded input video streams
are subsequently processed by the low-latency packag-
ers (mediastreamsegmenter13 for LL-HLS, and FFm-
peg14 for LL-DASH). The outputs of low-latency
packagers are the chunked video segments and mani-
fest files informing the players on how to consume
the streams in low-latency mode. Next, the output
stream files are served by the low-latency media servers

28 SMPTE Motion Imaging Journal | August 2022

LL-HLS.13 The same encoding profile parameters have
been used for the generation of both LL-DASH and
LL-HLS streams.

The overall session duration that we used to test each
player’s performance under each network was 10 min-
utes. Given selected chunk and fragment durations, this
has allowed about 600 chunks or equivalently 150 seg-
ments to be downloaded per session.

We have evaluated six implementations of low-latency
streaming players. For LL-HLS, we used Apple’s
AVPlayer,7 HLS.js,8 and Shaka player.9 For LL-DASH,
we used Dash.js with three different low-latency ABR
algorithms: 1) Dash.js original,10 2) Dash.js with LoL
algorithm,11 and 3) Dash.js with L2ALL algorithm.12
We have implemented simple test applications for all
the players. The applications were built using the lat-
est player Software Development Kit (SDK) releases as
available in December 2020.

The reporting of metrics indicative of live stream-
ing latency, playback speed, and rebuffering events has
been instrumented in the video player applications.
Other metrics such as stream bitrate, video resolution,
and media data downloaded have been derived from the
streaming servers’ access logs. The processing of all col-
lected metrics was done offline.

The player’s streaming latency was calculated by
following the method described in Ref. 6, which is

(lowLatencyHLS.php13 for LL-HLS, node-gpac-dash15
for LL-DASH) to players in a chunked manner. On the
player side, the web-based players run on the Chrome
web browser, and the iOS native player (HLS) runs on
the AVPlayer framework on iOS. The Chrome browser
and the AVPlayer run inside the Mahimahi container43
and connect to the media server via an emulated virtual
network interface.

As a test video sequence, we used a 1080p/30
frames/sec version of the Big Buck Bunny video.51 This
sequence is sufficiently long and exhibits a broad range
of spatial and temporal statistics, making it a popular
choice for testing video applications. To enable con-
tinuous live streaming, this sequence was looped by
FFmpeg. For adaptive streaming, this sequence was
transcoded into three variant streams with parameters
listed in Table 1. The resolution and bitrate parameters
have been selected for this video by using the Brightcove
Context Aware Encoding tool.52–54 The top bitrate was
limited to match bitrates attainable by mobile networks.

To minimize fluctuations of encoding bitrates from
their declared targets, a constant bitrate (CBR) encod-
ing mode has been utilized. H.264 encoder operating in
Baseline profile has been used. Lookahead processing
is disabled. The segment lengths and fragment dura-
tions were set to 4 and 1 sec, respectively, matching
the default values used in Apple’s streaming tools for

FIGURE 1.  Architectures LL-HLS (left) and LL-DASH (right) streaming systems used for testing.

Table 1. Encoding profile parameters used for both LL-HLS and
LL-DASH systems.

Parameter Rendition 1 Rendition 2 Rendition 3

Bitrate (kbits/s) 279 925 1,253

Frame rate (frames/sec) 30 30 30

Video resolution (pixels) 320 × 180 640 × 360 768 × 432

Seg. duration (sec) 4 4 4

Chunk duration (sec) 1 1 1

Video codec H.264 H.264 H.264

Video codec profile Baseline Baseline Baseline

Media format ISOBMFF ISOBMFF ISOBMFF

http://HLS.js
http://Dash.js
http://Dash.js
http://Dash.js
http://Dash.js

August 2022 | SMPTE Motion Imaging Journal 29

common for both LL-DASH and LL-HLS. Essentially,
at any time point, we take the difference between the
elapsed presentation time and the elapsed wall clock
time, from the beginning of a streaming session

	  PL = (WC – WCA) − (PT – PTA)/TS� (1)

where PL represents the live presentation latency, and
WC and PT represent the current wall-clock time and
the current presentation time, respectively. WCA and
PTA represent the beginning wall-clock time and the
beginning presentation time, respectively. TS repre-
sents the timescale used for reporting presentation time.

For LL-DASH, the above values have been obtained
from the ProducerReferenceTime6 element embedded
in a media presentation description (MPD) file, and
W3C HTML5 video currentTime application pro-
gramming interface (API),55 and/or a DASH-MPD file.
For LL-HLS, these values have been derived from the
HLS m3u8 file and currentTime API.

The number of rebuffering events and the players’
playback speed have been obtained by using the waiting
event API55 and the playbackRate API,55 respectively.

The playback speed variation was calculated as the
Euclidean distance of all the measured playback speeds
relative to the native speed (which equals 1)

    playbackSpeedVariation = 1n∑i = 1Nsi − 12� (2)

parameter N used in this formula denotes the number
of playback speed measurements conducted during
the session. All other metrics including stream bitrate,
video resolution, media data downloaded, and a num-
ber of bitrate switches have been derived from the server
logs. The full list of metrics collected in our test system
is summarized in Table 2.

We used the Mahimahi network emulator43 to emu-
late network conditions at the network interface level.
Mahimahi is essentially a Linux container that can
run an application inside of it. An application inside
Mahimahi connects to the outside world through a
virtual network interface that sends and receives bytes
according to the running downlink and uplink traces.
This way, the capacity of the network interface is lim-
ited by the running trace. We used traces that have been
recorded from real-world mobile networks. When we
run the test players inside Mahimahi, the player down-
load speed is limited by the capacity of the virtual inter-
face. Unlike using bandwidth throttling features in web
browsers, Mahimahi provides more faithful network
emulation by using real-world traces and throttling
bandwidth at the network interface level. Additionally,
the same network traces are replayed for all the test ses-
sions. This allows a fair and realistic comparison of dif-
ferent players.

We have evaluated LL-HLS and LL-DASH play-
ers using two 4G-LTE network traces from T-Mobile

Table 2. Performance metrics collected in
our experiments.

Metrics Impact domain(s)

Streaming bitrate (kbits/s) Efficiency, QoE

Video resolution (height) QoE

Streaming latency (sec) Latency, QoE

Variation of playback speed QoE

Frequency of stream switches QoE

Frequency of rebuffering events QoE

Downloaded media data (Mbytes) Efficiency

Media objects (chunks or segments)
downloaded

Efficiency

FIGURE 2.  Visualizations of network bandwidth traces used for tests.

Table 3. Bandwidth statistics of network
traces used for tests.

Bandwidth statistics T-Mobile Verizon

Average bitrate (kbits/s) 12,258 10,565

St. deviation of bitrate (kbits/s) 9,314 8,619

Minimum bitrate (kbits/s) 12 12

Maximum bitrate (kbits/s) 59,460 42,804

30 SMPTE Motion Imaging Journal | August 2022

and Verizon, respectively.43 We provide visualizations of
these traces in Fig. 2. In Table 3, we list several basic
statistics associated with them.

We note that the traces that we have selected for test-
ing are pretty challenging, capturing situations with
mobile handoffs and other forms of impairments that
may happen in practice. In fact, with the selected traces,
we should expect streaming players to enter a buffering
state at least once or twice throughout the session. On
the other hand, we also note that the effective average
bitrate supported by both networks is higher than the
bitrate used by the top rendition in our encoding pro-
files. This should enable players to use all renditions for
network adaptation.

Results
In this section, we present the results of our tests of LL-
DASH and LL-HLS systems using different networks.

Results for Tests Using Verizon 4G LTE Network
First, we review the results obtained by using traces
of the Verizon 4G LTE network. Table 4 offers sum-
mary metrics. Figure 3 shows the dynamics of bitrate
changes in LL-HLS and LL-DASH systems. Figure 4
shows the dynamics of playback latencies achieved by
both systems.

Based on Table 4 and Fig. 4, we first note that the laten-
cies achieved by LL-DASH players and their variations

were considerably lower than the ones achieved by LL-
HLS. Except for a couple of segments where bandwidth
drops significantly, the latencies of LL-DASH players have
been in the range of 3-4 sec. Among LL-HLS players, only
the Shaka player was able to stay at latency in the range of
7-9 sec. The HLS.js has also tried to keep latency low, but
runs in a large number of buffering events as a result. The
AVplayer’s behavior was interesting: it started to operate in
about 4-sec latency mode, but then, by the middle of the
session, it increased latency to 12 sec, and then increased it
again to 16 sec, and never recovered to a low-latency mode.

In terms of playback stability/prevention of rebuff-
ering events, we noted that AVplayer was most robust
among LL-HLS players, and DASH.js among LL-
DASH players. AVplayer buffered only two times, while
DASH.js buffered five times. But we also noticed that
many players have been switching across streams very
often. For example, AVplayer has made 130 switches in
600 sec—a long session. A switch at almost every seg-
ment boundary.

In terms of data usage and the ability to deliver high-
resolution videos, we noted that DASH.js was the best
among LL-DASH systems, and Shaka player was the
best among LL-HLS. AVplayer was a close next. The
average consumed bitrate and resolutions delivered
by the best players for LL-HLS and LL-DASH sys-
tems were comparable. But we also noted the number

FIGURE 3.  Bitrate variation over time—Verizon 4G LTE.

Table 4. Summary of performance metrics obtained for Verizon 4G LTE network.
Metrics LL-HLS players LL-DASH players

HLS.js Shaka AVplayer DASH.js LoL L2ALL

Avg. bitrate (kbits/s) 849 1,228 1,136 1,165 595 1,073

Avg. height (pixels) 328 426 404 410 262 387

Avg. latency (sec) 4.32 7.28 15.96 3.71 3.2 3.9

Var. playback speed 3.97 0 0 0.19 0.39 0.44

of switches 48 2 130 6 29 3

of rebufferings 36 12 2 5 79 56

Downloaded Mbits/s 85 90 99 88 45 81

Downloaded objects
(chunks + segments)

673
(662 + 11)

587
(587 + 0)

669
(611 + 58)

152 151 152

http://HLS.js
http://DASH.js
http://DASH.js
http://DASH.js
http://HLS.js
http://DASH.js

August 2022 | SMPTE Motion Imaging Journal 31

of objects (chunks or whole segments) downloaded by
LL-HLS systems was significantly higher than in LL-
DASH. This relates to the differences in the implemen-
tation of transfer protocols employed by both systems.

Results for Tests Using T-Mobile 4G LTE Network
First, we review the results obtained by using traces of
the T-Mobile 4G LTE network. Table 5 offers summary
metrics. Figure 5 shows the dynamics of bitrate changes
in LL-HLS and LL-DASH systems. Figure 6 shows the
dynamics of playback latencies achieved by both systems.

In the above table and plots, we notice many of the
same effects as we reported earlier. LL-DASH players

deliver lower latency, with much lower variation among
player implementations. The AVplayer starts in low-
latency mode but then increases latency by the end of
the session. The AVplayer and DASH.js are the best in
terms of buffering. While overall network conditions, in
this case, appear to be better, most players still perform a
high number of switches and run into at least one buffer-
ing situation. The observations regarding data loads are
the same as reported earlier.

Conclusion
In this study, we evaluated the LL-HLS and LL-DASH
streaming systems under identical network conditions

FIGURE 5.  Bitrate variation over time—T-Mobile 4G LTE.

Table 5. Summary of performance metrics obtained for T-Mobile 4G LTE network.
Metrics LL-HLS players LL-DASH players

HLS.js Shaka AVplayer DASH.js LoL L2ALL

Avg. bitrate (kbits/s) 783 1,043 1,037 1,225 537 1,251

Avg. height (pixels) 311 378 378 426 248 432

Avg. latency (sec) 5.82 4.48 7.78 3.06 1.78 2.28

Var. playback speed 3.62 0 0 0.23 1.62 0.42

of switches 50 8 72 4 28 0

of rebufferings 43 18 1 1 69 13

Downloaded Mits/s 156 81 92 93 42 94

Downloaded objects
(chunks + segments)

965
(743 + 222)

621
(621 + 0)

703
(698 + 5)

151 152 151

FIGURE 4.  Latency variation over time—Verizon 4G LTE.

http://DASH.js
http://HLS.js
http://DASH.js

32 SMPTE Motion Imaging Journal | August 2022

and by using several available implementations of
streaming players for both systems.

Based on our experiments, we confirmed that both
LL-HLS and LL-DASH can deliver significantly lower
latencies compared to the traditional HLS and DASH
streaming systems. Specifically, for LL-DASH players,
we observed latencies in the range of 3-4 sec, except for a
few segments when bandwidth was insufficient to main-
tain live playback. For LL-HLS players, we observed a
broader variation in streaming latencies across different
player implementations, but with most data points fitting
in the 4-10 sec range.

However, we also noticed that in trying to maintain
such a low delay, both LL-DASH and LL-HLS players
frequently make decisions impacting the QoE in many
other dimensions. Such observed effects include:
	■ high stream switching and buffering rates;
	■ the inability of some players to select high renditions;
	■ the inability of some players to maintain playback speed;
	■ more requests sent to the CDNs (particularly for LL-

HLS); and
	■ the inability of some players to maintain low delay.

Based on these observations, we believe that while
promising, both LL-HLS and LL-DASH systems still
have some room for improvement. This is especially
true when operating under challenging network condi-
tions, such as mobile networks with significant load,
handoffs, poor connectivity, and other effects occur-
ring in practice. What is most needed is an additional
tuning of the player’s ABR rate selection algorithms.
They need to be made more robust. However, with
much work in this direction already ongoing, includ-
ing trying advanced machine-learning-based rate
selection techniques (Refs. 10–12), we hope that these
technologies will soon mature and will be ready for
deployment at scale.

References
1.	 Internet Engineering Task Force (IETF), RFC 8216, “HTTP
Live Streaming.” Accessed: May 31, 2022. [Online]. Available:
https://tools.ietf.org/html/rfc8216, 2017
2.	International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC) 23009-1:2012,

“Information Technology—Dynamic Adaptive Streaming Over
HTTP (DASH)—Part 1: Media Presentation Description and
Segment Formats,” Feb. 2012.
3.	Internet Engineering Task Force (IETF), RFC 8216, “HTTP Live
Streaming, 2nd Edition,” 2019. Accessed: May 31, 2022. [Online].
Available: https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-08
4.	Apple, “Enabling Low-Latency HLS.” Accessed: May 31, 2022.
[Online]. Available: https://developer.apple.com/documentation/
http_live_streaming/enabling_low-latency_hls
5.	European Telecommunication Standards Institute (ETSI)
Technical Specification, “MPEG-DASH Profile for Transport
of ISO-BMFF Based DVB Services Over IP Based Networks.”
Accessed: July 8, 2022. [Online]. Available: https://www.
etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/
ts_103285v010301p.pdf
6.	DASH Industry Forum, “Low-Latency Modes for DASH.”
Accessed: May 31, 2022. [Online]. Available: https://dashif.org/
docs/CR-Low-Latency-Live-r8.pdf
7.	AVFoundation, Accessed: May 31, 2022. [Online]. Available:
https://developer.apple.com/av-foundation/
8.	Hls.js Player, Accessed: May 31, 2022. [Online]. Available:
https://github.com/video-dev/hls.js/
9.	Shaka Player, Accessed: May 31, 2022. [Online]. Available:
https://github.com/google/shaka-player
10.	Dash.js Player, Accessed: May 31, 2022. [Online]. Available:
https://github.com/Dash-Industry-Forum/dash.js
11.	 M. Lim et al., “When They Go High, We Go Low: Low-
Latency Live Streaming in dash.js with LoL,” ACM Multimedia
Syst. Conf., Online, June 8–11, 2020.
12.	T. Karagkioules et al., “Online Learning for Low-Latency
Adaptive Streaming,” ACM Multimedia Syst. Conf., Online, June
8–11, 2020.
13.	HLS Tools, Accessed: May 31, 2022. [Online]. Available:
https://developer.apple.com/documentation/http_live_streaming/
about_apple_s_http_live_streaming_tools
14.	FFmpeg, Accessed: May 31, 2022. [Online]. Available:
https://www.ffmpeg.org/
15.	DASH Low Latency Server, Accessed: May 31, 2022. [Online].
Available: https://github.com/maxutility2011/node-gpac-dash
16.	D. Wu et al., “Streaming Video Over the Internet: Approaches
and Directions,” IEEE Trans. CSVT, 11(3):282–300, 2001.
17.	 G. Conklin et al., “Video Coding for Streaming Media Delivery
on the Internet,” IEEE Trans. CSVT, 11(3):269–281, 2001.
18.	B. Girod, et al., “Advances in Channel-Adaptive Video
Streaming,” Wireless Comm. Mobile Comp., 2(6):573–584, 2002.
19.	 A. Bentaleb et al., “A Survey on Bitrate Adaptation Schemes
for Streaming Media Over HTTP,” IEEE Commun. Surv. Tutor.,
21(1):562–585, 2019.
20.	J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness,
Efficiency, and Stability in HTTP-Based Adaptive Video

FIGURE 6.  Latency variation over time—T-Mobile 4G LTE.

https://tools.ietf.org/html/rfc8216
https://tools.ietf.org/html/draft-pantos-hls-rfc8216bis-08
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_hls
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_103285v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_103285v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_103285v010301p.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://developer.apple.com/av-foundation/
http://Hls.js
https://github.com/video-dev/hls.js/
https://github.com/google/shaka-player
http://Dash.js
https://github.com/Dash-Industry-Forum/dash.js
http://dash.js
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
https://www.ffmpeg.org/
https://github.com/maxutility2011/node-gpac-dash

August 2022 | SMPTE Motion Imaging Journal 33

Streaming With FESTIVE,” IEEE/ACM Trans. Netw., 22(1):326–
340, Feb. 2014.
21.	Z. Li et al., “Probe and Adapt: Rate-Adaptation for HTTP
Video Streaming at Scale,” IEEE J Sel. Areas Commun., 32(4):719–
733, April 2014.
22.	K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA:
Near-Optimal Bitrate Adaptation for Online Videos,” Annu. IEEE
Int. Conf. Comput. Commun., pp. 1–9, 2016.
23.	T. Huang et al., “A Buffer-Based Approach to Rate
Adaptation: Evidence From a Large Video Streaming Service,”
ACM SIGCOMM, pp. 187–198, 2014.
24.	 K. Spiteri, R. Sitaraman, and D. Sparacio, “From Theory to
Practice: Improving Bitrate Adaptation in the DASH Reference Player,”
ACM Trans. Multimedia Comput. Commun. Appl., 15(2s), Article 67, 2019.
25.	S. Hesse, “Design of Scheduling and Rate-Adaptation
Algorithms for Adaptive HTTP Streaming,” SPIE 8856, Appl. of
Digital Image Process. XXXVI, 88560M, 2013.
26.	X. Yin et al., “A Control-Theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP,” SIGCOMM Comput.
Commun., Rev. no. 45(4) 325–338, 2015.
27.	C. Zhou et al., “A Control-Theoretic Approach to Rate
Adaptation for Dynamic HTTP Streaming,” Visual Comm. Image
Processing, San Diego, CA, pp. 1–6, 2012.
28.	D. Talon et al., “Comparing DASH Adaptation Algorithms in
a Real Network Environment,” Eur. Wireless 2019; 25th Eur. Wireless
Conf., 2019.
29.	C. Storck and F. Figueiredo, “A Performance Analysis of
Adaptive Streaming Algorithms in 5G Vehicular Communications
in Urban Scenarios,” IEEE Symp. Comput. Commun., pp. 1–7, 2020.
30.	D. Raca et al., “DASHbed: A Testbed Framework for Large
Scale Empirical Evaluation of Real-Time DASH in Wireless
Scenarios,” ACM Multimedia Syst. Conf., Amherst, MA, pp. 285–
290, June 18–21, 2019.
31.	 I. Ayad et al., “A Practical Evaluation of Rate Adaptation
Algorithms in HTTP-based Adaptive Streaming,” Elsevier Comput
Netw., 133:90–103, 2018.
32.	C. Midoglu, et al., “Docker-Based Evaluation Framework for
Video Streaming QoE in Broadband Networks,” ACM Int. Conf.
on Multimedia, Nice, France, pp. 2288–2291, Oct. 21–25, 2019.
33.	 B. Taraghi et al., “CAdViSE: Cloud-based Adaptive Video
Streaming Evaluation Framework for the Automated Testing of
Media Players,” ACM Multimedia Syst. Conf., Online, June 8–11, 2020.
34.	A. Zabrovskiy et al., “AdViSE: Adaptive Video Streaming
Evaluation Framework for the Automated Testing of Media Players,”
ACM Multimedia Syst. Conf., Taipei, Taiwan, June 20–23, 2017.
35.	D. Raca et al. “Beyond Throughput: A 4G LTE Dataset With
Channel and Context Metrics,” ACM Multimedia Syst. Conf., New
York, NY, pp. 460–465, 2018.
36.	A. Bentaleb et al., “Data-Driven Bandwidth Prediction
Models and Automated Model Selection for Low Latency,” IEEE
Trans. on Multimedia, Aug. 2020.
37.	 A. Bentaleb et al., “Bandwidth Prediction in Low-Latency
Chunked Streaming,” ACM Workshop on Network and Operating
Syst. Support for Digital Audio and Video, Amherst, MA, pp. 7–13,
June 21, 2019.
38.	A. Bentaleb et al., “Performance Analysis of ACTE: A
Bandwidth Prediction Method for Low-latency Chunked
Streaming,” ACM Trans. Multimedia Comp., Comm., Appl., 16(2s):1–
24, 2020.
39.	 I. Ozcelik and C. Ersoy, “Low-Latency Live Streaming Over
HTTP in Bandwidth-Limited Networks,” IEEE Commun. Lett.,
25(2):450–454, 2021.
40.	K. Durak et al., “Evaluating the Performance of Apple’s Low-
Latency HLS,” IEEE Int. Workshop on Multimedia Signal Process.,
pp. 1–6, Sep. 21–24, 2020.

41.	T. Huang et al., “Hindsight: Evaluate Video Bitrate
Adaptation at Scale,” ACM Multimedia Syst. Conf., Amherst, MA,
pp. 86–97, June 18–21, 2019.
42.	B. Zhang, T. Teixeira, and Y. Reznik, “Performance of Low-
Latency HTTP-based Streaming Players,” ACM Multimedia Syst.
Conf., Istanbul, Turkey, Sept. 28–Oct. 1, 2021.
43.	R. Netravali et al., “Mahimahi: Accurate Record-and-Replay
for HTTP,” USENIX Annual Tech. Conf., Santa Clara, CA, July
8–10, 2015.
44.	A. Mondal et al., “EnDASH—A Mobility Adapted Energy
Efficient ABR Video Streaming for Cellular Networks,” IFIP
Networking Conf., pp. 127–135, 2020.
45.	G. Ribezzo et al., “A DASH 360° Immersive Video Streaming
Control System,” Internet Tech. Lett., 3(5), 2020.
46.	S. Sengupta et al., “HotDASH: Hotspot Aware Adaptive
Video Streaming Using Deep Reinforcement Learning,” IEEE
Int. Conf. on Network Protocols, pp.165–175, 2018.
47.	 Open Broadcast Software. Accessed: May 31, 2022. [Online].
Available: https://obsproject.com/
48.	B. Zhang, “Setting Up Your Own Low-Latency HLS
Server to Stream from any Source Inputs.” Accessed: May 31,
2022. [Online]. Available: https://bozhang-26963.medium.com/
setting-up-your-low-latency-hls-server-to-stream-from-any-
source-inputs-de1e757a6688
49.	B. Zhang, “Low-Latency DASH Streaming Using Open-
Source Tools.” Accessed: May 31, 2022. [Online]. Available:
ht tps: // bozhang-26963.medium.com / low-latency-dash-
streaming-using-open-source-tools-f93142ece69d
50.	Nginx Web Server. Accessed: May 31, 2022. [Online].
Available: https://www.nginx.com/
51.	Blender Foundation, “Big Buck Bunny Video.” Accessed:
May 31, 2022. [Online]. Available: http://bbb3d.renderfarming.
net/download.html
52.	 Y. Reznik et al., “Optimal Design of Encoding Profiles for
ABR Streaming,” Proc. Packet Video Workshop, Amsterdam, The
Netherlands, June 12, 2018. Accessed: July 8, 2022. [Online],
Available: https://www.w3.org/TR/2011/WD-html5-20110113/
video.html
53.	Y. Reznik et al., “Optimizing Mass-Scale Multiscreen Video
Delivery,” SMPTE Motion Imaging J., 129(3):26–38, 2020.
54.	Brightcove Context Aware Encoding. [Online]. Available:
https://www.brightcove.com/en/products/online-video-platform/
context-aware-encoding/
55.	HTML5 Video. Accessed: May 31, 2022. [Online]. Available:
https://www.w3.org/TR/2011/WD-html5-20110113/ video.html

About the Authors
Bo Zhang is a video systems engi-
neer at Brightcove, Inc., Boston,
MA. He researches video deliv-
ery and playback technologies
and builds high-quality, smooth,
scalable, and low-latency video
streaming software. He has pub-
lished several research articles in
the domains of video streaming and

wireless communications. He received a PhD degree in
computer science from George Mason University, Fairfax,
VA, an MS degree in computer science from the University
of Cincinnati, Cincinnati, OH, and a BS degree in com-
puter science from the Huazhong University of Science
and Technology, Wuhan, China. He was a recipient of the
Best Paper Award from the Association for Computing
Machinery (ACM) MSWiM 2011.

https://obsproject.com/
https://bozhang-26963.medium.com/setting-up-your-low-latency-hls-server-to-stream-from-any-source-inputs-de1e757a6688
https://bozhang-26963.medium.com/setting-up-your-low-latency-hls-server-to-stream-from-any-source-inputs-de1e757a6688
https://bozhang-26963.medium.com/setting-up-your-low-latency-hls-server-to-stream-from-any-source-inputs-de1e757a6688
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-open-source-tools-f93142ece69d
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-open-source-tools-f93142ece69d
https://www.nginx.com/
http://bbb3d.renderfarming.net/download.html
http://bbb3d.renderfarming.net/download.html
https://www.w3.org/TR/2011/WD-html5-20110113/video.html
https://www.w3.org/TR/2011/WD-html5-20110113/video.html
https://www.brightcove.com/en/products/online-video-platform/context-aware-encoding/
https://www.brightcove.com/en/products/online-video-platform/context-aware-encoding/
https://www.w3.org/TR/2011/WD-html5-20110113/

34 SMPTE Motion Imaging Journal | August 2022

Thiago Teixeira is a software engi-
neer at Brightcove, Inc., Boston,
MA. He works across teams to
improve the company’s internal
design systems and contributes to
innovations and new technology
research initiatives. He received a
PhD degree in computer engineer-
ing from the University of Massa-

chusetts at Amherst, Amherst, MA, in 2019, and a BE
degree in electrical engineering from Unisinos University,
São Leopoldo, Brazil, in 2013. His research interests
include computer networks, new internet architectures,
and wireless communications.

Yuriy Reznik is a technology fel-
low and vice president of research
at Brightcove Inc., Boston, MA.
Previously, he held engineering
and management positions with
InterDigital, San Diego, CA, from
2011 to 2016, Qualcomm, San
Diego, CA, from 2005 to 2011, and
RealNetworks, Seattle, WA, from

Presented at the SMPTE 2021 ATC virtual event. Copyright © 2022 by
SMPTE.�

1998 to 2005. In 2008, he was a visiting scholar at Stan-
ford University, Stanford, CA. Since 2001, he has been
involved in the work of ITU-T SG16 and MPEG stan-
dards committees and made contributions to several mul-
timedia coding and delivery standards, including ITU-T
H.264/MPEG-4 AVC, MPEG-4 ALS, ITU-T G.718,
ITU-T H.265/MPEG-HEVC, and MPEG-DASH. Sev-
eral technologies, standards, and products that he has
helped to develop (RealAudio/RealVideo, ITU-T H.264/
MPEG-4 AVC, Zencoder, Brightcove CAE, and MPEG-
DASH) have been recognized by the National Academy
of Television Arts and Sciences (NATAS) Technology and
Engineering Emmy Awards. He received a PhD degree in
computer science from Kyiv University, Kyiv, Ukraine. He
is a Senior Member of IEEE and the International Soci-
ety for Optics and Photonics (SPIE), and a member of
the Association for Computer Machinary (ACM), Audio
Engineering Society (AES), and SMPTE. He is a coau-
thor of over 150 conference papers and journal articles,
and a coinventor of over 70 granted U.S. patents.

