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Abstract

Andersson and Nilsson have already shown that the average depth Dn of random LC-tries
is only Θ (log∗ n) when the keys are produced by a symmetric memoryless process, and that
Dn = O (log log n) when the process is asymmetric. In this paper we refine the second estimate
by showing that asymptotically (with n → ∞): Dn ∼ 1

η
log log n, where n is the number of

keys inserted in a trie, η = − log (1− h/h−∞), h = −p log p− q log q is the entropy of a binary
memoryless source with probabilities p, q = 1− p (p 6= q), and h−∞ = − log min(p, q).

Key words: average case analysis of algorithms, trie, LC-trie.

1 Introduction

Level compressed trie (or LC-trie) introduced in 1993 by Andersson and Nilsson [1], represent a
modification of the radix search tree (trie) structure [12], in which all complete subtrees are replaced
by larger (multi-digit) nodes. Such a replacement is done in a recursive manner starting with a root
node and results in a substantially flatter structure, requiring less number of steps for performing
standard searching and sorting operations.

Main applications of LC-tries include algorithms for searching and sorting, image segmentation,
image processing, geographic information systems, and robotics [1, 2]. Most of recent interest to
LC-tries was due to their successful applications in the design of software Internet routers [14, 15].
Prior to LC-tries (and some specialized hashing schemes [21]) software IP-lookup algorithms have
long been considered non-scalable to large networks, and routers used expensive CAM (Content
Addressable Memory)-based architectures (see, e.g. [13]).

All early results on the average behavior of LC-tries belong to Andersson and Nilsson [1, 2].
Thus, they have shown that the average depth Dn of LC-tries over n keys produced by a symmetric
memoryless process is only Θ (log∗ n). Under an asymmetric memoryless process (i.e. a process in
which probabilities of possible outcomes are different), however, their average depth was shown to
be O (log log n) [2].

Devroye has recently published a more precise analysis of LC-tries in the symmetric case [7],
showing, for instance, convergence in probability of their typical depth Dn/ log∗ n → 1 and height
Hn/ log2 n → 1. At the same time, finding a more accurate characterization of LC-tries in the
asymmetric model has been a long standing open problem. It was not clear, for example, how big
is the factor in the O (log log n) term of their average depth, or to which degree it can be affected
by changing parameters of the input process.

In this paper we will attempt to answer these questions. Our main result1, a first-term accurate
asymptotic expression for Dn shows that LC-tries are, in fact, much more sensitive to the asym-
metry of the input process than regular tries. Thus, if input data are generated by an extremely
biased source it might not even make a practical sense to use level-compression, unless a special
”symmetrization” technique [17] is employed to balance source’s probabilities first.

1After this paper was submitted, the author has learned that the same formula has also been obtained by Devroye
and Szpankowski [8]. Their proof, however, is different and relies on advanced probabilistic techniques.
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Figure 1: Examples of tries built from 9 binary strings: s1 = 000000 . . ., s2 = 000010 . . ., s3 =
00011 . . ., s4 = 0010 . . ., s5 = 0011 . . ., s6 = 0100 . . ., s7 = 0110 . . ., s8 = 101 . . ., s9 = 110 . . ..

2 Definitions and Main Results

Consider a set S = {s1, . . . , sn} of n distinct strings, where each string si (i = 1 . . . n) is a sequence
of digits from a binary alphabet Σ = {0, 1}. 2.

Definition 1. A binary trie T (S) over the set S is a data structure defined recursively as follows.
If n = 0, the trie is empty. If n = 1 (i.e. S has only one string), the trie is an external node
containing a pointer to this single string in S. If n > 1, the trie is an internal node containing
pointers to two child tries: T (S0) and T (S1), constructed over two sets of suffixes of strings in S
beginning with digits 0 and 1 correspondingly: Sα = {uj | α uj = si ∈ S}, α ∈ Σ.

Definition 2. An LC-trie TLC (S) over S is a data structure defined recursively as follows. If n =
0, the trie is empty. If n = 1 , the trie is an external node containing a pointer to a string
in S. If n > 1, the trie is an r-digit internal node (r > 1) containing pointers to 2r child LC-
tries: TLC (S0) , . . . , TLC (S2r−1), constructed over suffixes of strings from S beginning with the
corresponding r-digit words Sv = {uj | v uj = si ∈ S}, v ∈ Σr. The number of digits r is selected to
be the smallest number such that at least one child trie becomes empty or turns into an external
node:

∑
v∈Σr 1{|Sv| 6 1} > 1.

Examples of a binary trie and its level-compression version are shown in Fig.1.
In order to study the average behavior of tries we assume that our input strings S are generated

by a binary memoryless (or Bernoulli) source [4]. In this model, symbols of the alphabet Σ = {0, 1}
occur independently of one another with probabilities p and q = 1−p correspondingly. If p = q = 1/2,
such source is called symmetric, otherwise it is asymmetric.

Our main attention will be focused on two closely-related quantities: the average external path
length (i.e. the sum of lengths of paths from root to all external nodes in a trie) Cn, and the average
depth Dn of LC-tries over n strings:

Dn = Cn/n. (1)

Our main finding is formulated in the following theorem.
2We use binary alphabet for the simplicity of presentation only. All our results should remain correct (with the

appropriate re-formulations of constants and bases of logarithms) for any finite alphabet
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Figure 2: Plots of the 1/h and 1/η factors in the leading terms of depths of tries and LC-tries.

Theorem 1. The average depth of LC-tries in the asymmetric memoryless model satisfies (with
n →∞):

Dn

log log n
→ 1

η
(pr.) , (2)

where n is the number of keys inserted in a trie, η = − log (1− h/h−∞), h = −p log p − q log q is
the (Shannon’s) entropy of the binary source with probabilities p, q = 1− p, h−∞ = − log min(p, q),
and log := logb, where b is a unit of information (e.g. bits or nats) being used.

This result can be compared to a well-known asymptotic expression of average depth of reg-
ular tries: 1

h log n + O (1) (see, e.g. [12, 5, 19]). While the order of the first term here is much
larger (log n vs. log log n of LC-tries), its factor 1/h appears to be much more robust with respect
to the asymmetry of the source.

We show the behavior of these two quantities 1/η and 1/h in Fig.2. Notice than when the source
is close to become symmetric 1/η → 0, which explains cancellation of all terms in Dn up to log∗ n.
At the same time, the factor 1/h in a symmetric case becomes 1/ log 2 > 0 leaving the order of the
leading term in the expression of depth of regular tries unchanged.

Looking at Fig.2, we can also notice that there exist points p = ζ and p = 1 − ζ where curves
of 1/h and 1/η intersect. Numerical calculations show that this constant ζ ≈ 0.2675709462. It is
clear, that when p is outside the [ζ, 1 − ζ] range, the quantity 1/η becomes much larger than 1/h,
and this distance is rapidly increasing with the asymmetry of the source. In particular, it is easy to
show that limp→0 h/η = ∞.

Described behavior of 1/η confirms the fact that LC-tries are much more sensitive to the asymme-
try of the source than regular tries. If source is heavily biased, the number of complete sub-trees in
a trie decreases, and at some point level-compression just wouldn’t be able to speed-up such a struc-
ture. On the other hand, sharp increase of 1/η with p → 0 suggests that probability-equalization
techniques, such as ”symmetrization” mapping [17] should provide very effective means for improving
performance of LC-tries.

3 Analysis

We start with quoting an important result (cf. Pittel [16], Devroye [6], and Knessl and Szpan-
kowski [11]) regarding the number of complete levels Fn in a random trie.
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Proposition 1. Let Fn be the number of complete levels in a trie oven n strings produced by a
binary memoryless source. Then, when p 6= q and n →∞:

Fn − log n
h−∞

log log log n
→ − 1

h−∞
(pr.) , (3)

where h−∞ = − log min(p, q).

In order to construct an LC-trie one needs to find the first incomplete level r:

r = rn := Fn + 1, (4)

and then create a 2rn-digit root node. This process is recursively repeated as long as n > 2.
We immediately discover the following.

Lemma 1. Parameters Cn (average external path length of LC tries over n strings) in a binary
memoryless model satisfy:

Cn = n +
n∑

k=2

(
n

k

) rn∑
s=0

(
rn

s

) (
psqrn−s

)k (
1− psqrn−s

)n−k
Ck; (5)

C0 = C1 = 0.

Proof. Consider an rn-digit node processing n strings. Assuming that each of its 2rn branches have
probabilities p1, . . . , p2rn , and using the standard technique for enumeration of Cn in tries [12, 6.3-3],
we can write:

Cn = n +
∑

k1+...+k2rn =n

(
n

k1, . . . , k2rn

)
pk1
1 . . . pk2rn

2rn (C1 + . . . + C2rn ) ,

= n +
n∑

k=0

(
n

k

) (
pk
1 (1− p1)

n−k + . . . + pk
2rn (1− p2rn )n−k

)
Ck. (6)

Recall now that our strings are generated by a binary memoryless source with probabilities p, and
q = 1− p. This means that:

pi = psiqrn−si , (7)

where si is the number of occurrences of symbol 0 in a string leading to a branch i (1 6 i 6 2rn).
Combining (6) and (7), we arrive at the expression (5) claimed by the lemma.

It shall be stressed that due to existence of variables rn in (5) the analysis of this recurrence
becomes much more difficult than in a case of regular tries (see e.g. Knuth [12, 6.3-3], Flajolet
and Sedgewick [10], or Szpankowski [19]). It is not clear, for example, if there exists a closed form
expression for this recurrence (all standard techniques from [12] seem to fail in this case). Without
such a conversion, one still can try to use multivariate generation functions followed by their complex-
domain singularity analysis (see, e.g. [9], [20]), but these are quite laborious and delicate (in their
own sense) techniques.

Here, we will use much simpler approach. Since we already know that Dn = O(log log n), we can
try to substitute Cn = ξn log log n in (5) and then find upper and lower bounds for the parameter
ξ such that recurrence (5) holds. If these bounds are tight, then we have successfully deduced the
constant factor in the O(log log n) term.

In order to realize this idea, we will need the following intermediate results. For simplicity, here
and below we use natural logarithms.

Lemma 2. Let θ ∈ (0, 1), n > 2, and λ > 1. Then there exists 0 < ζ < ∞, such that:

nθ ln(λ + ln(nθ))− ζ 6
n∑

k=2

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k) 6 nθ ln (λ + ln (1− θ + nθ)) . (8)

4



Proof. We start with a representation:
n∑

k=2

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k) =
n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)− nθ(1− θ)n−1 ln λ

where the last term can be easily bounded by:

nθ(1− θ)n−1 ln λ 6 θe−1

(θ − 1) ln(1− θ)
lnλ =: ζ .

Next, by Jensen’s inequality for x ln(λ + ln x):
n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)

>
(

n∑

k=1

(
n

k

)
θk (1− θ)n−k

k

)
ln

(
λ + ln

(
n∑

k=1

(
n

k

)
θk (1− θ)n−k

k

))

= nθ ln(λ + ln(nθ)) .

where convexity for k > 1 is assured by picking λ > 1.
To obtain an upper bound we use Jensen’s inequality for − ln(λ + ln(1 + x)):

n∑

k=1

(
n

k

)
θk (1− θ)n−k

k ln(λ + ln k)

= nθ

n−1∑

k=0

(
n− 1

k

)
θk (1− θ)n−1−k ln(λ + ln(1 + k))

6 nθ ln

(
λ + ln

(
1 +

n−1∑

k=0

(
n− 1

k

)
θk (1− θ)n−1−k

k

))

= nθ ln (λ + ln (1− θ + nθ)) .

Lemma 3. Let θ ∈ (0, 1), α, β > 0, and α > β. Then, for any n > 1:

ln(α− β(1− θ) + βθn) 6
n∑

k=0

(
n

k

)
θk (1− θ)n−k ln(α + βk) 6 ln(α + βθn) . (9)

Proof. We use the same technique as in the previous Lemma. By Jensen’s inequality for − ln(α+βx):

n∑

k=0

(
n

k

)
θk (1− θ)n−k ln(α + βk) 6 ln

(
α + β

n∑

k=0

(
n

k

)
θk (1− θ)n−k

k

)
= ln (α + βθn) .

The lower bound follows from Jensen’s inequality for x ln(α− β + βx): :
n∑

k=0

(
n

k

)
θk (1− θ)n−k ln(α + βk)

=
1

θ(n + 1)

n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k ln (α− β + βk)

> 1
θ(n + 1)

(
n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k

)
lg

(
α− β + β

n+1∑

k=1

(
n + 1

k

)
θk (1− θ)n+1−k

k

)

= ln (α− β(1− θ) + βθn) .

It is clear, that convexity and continuity in both cases is assured when α > β > 0.
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We are now prepared to solve our recurrence (5). For simplicity we assume that p > 1/2.
Let Cn = ξn ln(λ + ln n), where λ > 1 is a constant. Then, according to Lemma 2:

Cn = n +
rn∑

s=0

(
rn

s

) n∑

k=2

(
n

k

) (
psqrn−s

)k (
1− psqrn−s

)n−k
ξk ln(λ + ln k)

6 n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s + 1− psqrn−s

))

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s

)
+ ln

(
1 +

1
n psqrn−s

− 1
n

))
.

Next, by Proposition 1, we know, that for any ε > 0, the probability that
∣∣∣∣rn − ln n

− ln q
+

ln ln ln n

− ln q
− 1

∣∣∣∣ 6 ε ln ln ln n , (10)

holds true is approaching 1 with n →∞. Then:

n psqrn−s > n qrn > n q
ln n

− ln q− ( 1
− ln q−ε) ln ln ln n+1 = q (ln ln n)1+ε ln q

. (11)

and consequently:

ln
(

1 +
1

n psqrn−s
− 1

n

)
6 ln

(
1 +

1

q (ln ln n)1+ε ln q
− 1

n

)
=: δ(n, ε) , (12)

which is a relatively small (δ(n, ε) = O
(
(ln ln n)−1−ε ln q) when 1 + ε ln q > 0) quantity.

By incorporating this bound and using Lemma 3:

Cn 6 n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln

(
λ + ln

(
n psqrn−s

)
+ δ(n, ε)

)

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln (λ + ln n + rn ln q + s ln(p/q) + δ(n, ε))

6 n + nξ ln (λ + ln n− h rn + δ(n, ε)) ,

where h = −p ln p− q ln q is the entropy. Now, by applying (10), we have:

Cn 6 n + nξ ln
(

λ + ln n

(
1− h

− ln q

)
+ h

(
1

− ln q
+ ε

)
ln ln ln n− h + δ(n, ε)

)
,

and by plugging Cn = ξn ln(λ + ln n) in the left side of the above inequality, we finally obtain:

ξ 6 1

− ln
(

1− h
− ln q +

λ+h( 1
− ln q +ε) ln ln ln n−h+δ(n,ε)

ln n

)
+ ln

(
1 + λ

ln n

)

=
1

− ln
(
1− h

− ln q

)
(

1 + O

(
ε ln ln ln n

ln n

))
. (13)
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The procedure for finding a lower bound is very similar:

Cn = n +
rn∑

s=0

(
rn

s

) n∑

k=2

(
n

k

) (
psqrn−s

)k (
1− psqrn−s

)n−k
ξk ln(λ + ln k)

> n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s log

(
λ + ln

(
n psqrn−s

))− ζ

= n + nξ

rn∑
s=0

(
rn

s

)
psqrn−s ln (λ + ln n + rn ln q + s ln(p/q))− ζ

> n + nξ ln (λ + ln n− h rn − q ln(p/q))− ζ

> n + nξ ln
(

λ + ln n

(
1− h

− ln q

)
+ h

(
1

− ln q
− ε

)
ln ln ln n− h− q ln(p/q)

)
− ζ .

which (after plugging Cn = ξn ln(λ + ln n) in the right side) leads to the following inequality:

ξ > 1− ζ/n

− ln
(

1− h
− ln q +

λ+h( 1
− ln q−ε) ln ln ln n−h−q ln(p/q)

ln n

)
+ ln

(
1 + λ

ln n

)

=
1

− ln
(
1− h

− ln q

)
(

1 + O

(
ε ln ln ln n

ln n

))
. (14)

By combining our bounds (13) and (14) and taking into account the fact that for any ε > 0, the
probability that they both hold true is approaching 1 with n →∞, we can conclude that:

ξ → 1

− ln
(
1− h

− ln q

) (pr.) .
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