
USER ADAPTIVE TRANSCODING FOR VIDEO TELECONFERENCING

Liangping Ma, Dharm Veer, Wei Chen, Gregory Sternberg, Yuriy A. Reznik, and Ralph A. Neff

InterDigital Communications, Inc., San Diego, CA 92121

ABSTRACT

The human visual system (HVS) cannot perceive spatial fre-
quency components in an image that are above a certain limit,
the value of which is affected by factors such as the view-
ing distance. This has been exploited to improve the video
coding efficiency by first filtering out redundant frequency
components and then doing conventional video encoding. To
facilitate the deployment of this scheme, we propose to im-
plement it in a network entity such as a Multipoint Control
Unit (MCU). Specifically, by analyzing the video sent from a
client, the MCU infers that client’s viewing conditions, which
are then used to adapt the encoding of the video destined to
that client. The scheme is implemented in a real-world video
teleconferencing system. Experimental results show that our
approach can result in significant savings in bandwidth with-
out affecting subjective video quality.

Index Terms— viewing conditions, perceptual pre-filter,
human vision, contrast sensitivity, user-adaptive video cod-
ing, video teleconferencing, MCU.

1. INTRODUCTION

The human visual system (HVS) cannot perceive spatial fre-
quencies in an image that are above a certain limit (or cutoff
frequency), which is influenced by viewing conditions such
as the viewing distance, ambient luminance and display char-
acteristics. Frequency components above the limit can be re-
moved to reduce the information in an image before the con-
ventional video compression is applied, thereby improving
the efficiency of image/video compression.

We use the contrast sensitivity function (CSF)
model [1][2][3] to characterize this phenomenon. This
model establishes a relationship between the spatial fre-
quency (in cycles per degree or cpd) and the contrast
sensitivity. The spatial frequency characterizes the oscillation
of a sinusoid in an image with respect to the angular span
of the sinusoid to the eyes. For a fixed sinusoid, as the
viewing distance increases, the angular span decreases
and hence the spatial frequency increases. The contrast
sensitivity is the inverse of the Michelson contrast, and the
higher it is, the lower the contrast is. The contrast sensitivity
is determined by the contrast of the image itself, and the
viewing conditions such as the ambient luminance and the

reflection of the display. Therefore, as the viewing condition
changes, the frequency components in an image that are
visible to the HVS also changes. Additionally, since the
contrast sensitivity may vary significantly from region to
region in an image, applying different cutoff frequencies
instead of the same one to different regions of an image to
filter the image prior to conventional video encoding may
dramatically improve the video compression efficiency, as
shown in our previous work [4][5]. The filtering is referred
to as perceptual pre-filtering, and the whole process (filtering
together with the conventional video encoding) is referred to
as user adaptive video coding.

Perceptual pre-filtering has been used to improve the
video coding efficiency of streaming video [4][5][6]. It has
not been applied to video teleconferencing, which is the focus
of our present work. Perceptual pre-filtering can reside either
at the client or in the network. To obtain the viewing condi-
tion, the client approach involves either the use of various sen-
sors on a mobile device, which may cause privacy concerns,
or the installation of sophisticated software on the client de-
vices for face detection, which may be time-consuming or in-
convenient. We take a network-based approach, and in partic-
ular focus on the Multi-point Control Unit (MCU). The MCU
analyzes the incoming video streams to infer the viewing con-
dition in realtime and then performs user adaptive video en-
coding on the outgoing video streams. Our approach does not
require any changes to the clients, and is thus easier to deploy.

The remainder of the paper is organized as follows. We
discuss related work in Section 2, present our approach in
Section 3, give the implementation details in Section 4, and
evaluate the performance in Section 5. Finally, we conclude
the paper in Section 6.

2. RELATED WORK

In the study of visual perception, spatial frequency is gener-
ally measured in cycles per degree. Specifically, let the length
of one cycle of the sinusoid be n pixels, the pixel density of
the display be ρ pixels per inch, and the viewing distance be
a. Then, the spatial frequency is defined as

f =
1

2 arctan(n/(2ρa))
. (1)



In the perceptual pre-filtering process, we eventually need a
frequency in cycles per pixel rather than cycles per degree.
The desired frequency is nothing but 1/n. Thus, the conver-
sion is: f (cycles per degree) ↔ 1/n (cycles per pixel). The
contrast sensitivity is defined as

C =
Imax + Imin

Imax − Imin
, (2)

where Imax and Imin are the maximum and minimum intensi-
ties of a visual signal (e.g., sinusoid) perceived by the human
eye, respectively. Imax and Imin depend not only on the lu-
minance value of the sinusoid in an image, but also on the
viewing conditions such as the ambient luminance and the re-
flection property of the display.

The CSF model [1][2][3] characterizes the visibility of a
sinusoid as a function of spatial frequency and contrast sensi-
tivity. At a given spatial frequency, there is a contrast sensitiv-
ity above which the sinusoid becomes invisible. Pairs of such
spatial frequency and the contrast sensitivity form a function,
which is called the CSF function, and the function is concave
with a peak at a moderate spatial frequency. To get the cutoff
frequency, we need to solve for the spatial frequency given
the contrast sensitivity, i.e., we need to get the inverse CSF
function. Since the CSF function is not monotonic, a mono-
tonic portion of the CSF function is used to obtain the inverse
function. Because different regions of an image may have dif-
ferent contrast sensitivity, the cutoff frequency is calculated
on a per-region basis. The cutoff frequencies in cpd are then
converted to cycles per pixels to low-pass filter different re-
gions of the image before the conventional video encoding is
applied. With perceptual pre-filtering, it is reported in [4] that
the x264 video encoder can achieve up to 70% improvement
in compression efficiency under certain viewing conditions.

Our present work differs from previous studies
[7][4][5][6] in several aspects. First, all prior schemes
require explicit feedback for communicating the viewing
condition from the user to the video encoder or server. In
our scheme, the network entity (MCU) estimates the viewing
condition by analyzing the passing video in the opposite
direction, which is feasible due to the bidirectional nature of
video teleconferencing traffic, and thus eliminates the need
for such feedback. Second, these prior studies focus on video
streaming, whereas our scheme focuses on video telecon-
ferencing, which differs significantly from video streaming
in quality of service requirements and the underlying trans-
port protocols. Third, in the prior studies the perceptual
pre-filtering is applied to the uncompressed video, while in
our scheme it is applied to a video which has undergone
compression once at a client. Since the original compression
process has not been adapted to viewing conditions, the
proposed filtering and transcoding process still leads to bit
rate savings. Fourth, unlike prior studies which focus only
on video codecs, we design and prototype the complete
system based on the latest video teleconferencing platform

WebRTC [8] and a real-world MCU platform Licode [9].

3. OUR APPROACH

We first describe the overall architecture of our proposed sys-
tem, and then discuss specific implementation techniques.

3.1. System Architecture

The system architecture is shown in Fig. 1, where two clients
are shown to communicate via video teleconferencing with
the assistance of an MCU which resides in the Internet. Each
client implements WebRTC [8], an open-source real-time
video communication application. The MCU runs Licode [9],
an open-source platform that implements some basic func-
tions of a typical MCU. Although Licode manages the call
setup, for delivering the video (and audio) content, it serves
the function of a router only, without any video (or audio) pro-
cessing capability. To enable user adaptive video coding in
the MCU, we implement additional functions including video
decoding, video encoding, video analysis, viewing condition
inference, and perceptual pre-filtering. The implementation
of WebRTC on the clients is not changed.

Decoder

Face Detection
Device Detection

Encoder

Decoder

Face Detection
Device Detection

Encoder

MCUVideo Frames

Client 1

WebRTC WebRTC

Client 2

Internet

Percep. Pre-filter Percep. Pre-filter

Cut-off freq. Cut-off freq.

Fig. 1. System architecture with two clients and an MCU.

Both clients benefit from user adaptive video coding. For
clarity, we describe the process that leads to benefiting Client
1. The MCU first analyzes the video frames (i.e., does face
detection on the video frames) sent from Client 1 to Client 2
to infer the viewing distance of Client 1. The MCU also ex-
tracts the control signaling (i.e., does device detection) from
the data sent from Client 1 to determine the pixel density of
the display watched by Client 1. The MCU then determines
the contrast sensitivity of each region of a video frame of the
video flow in the opposite direction sent by Client 2 and con-
sequently the cutoff frequencies and performs perceptual pre-
filtering, followed by conventional video encoding. In theory,
the conventional video encoder can use the same quantization



parameter configuration as the one used to encode the video
arriving at the MCU. In practice, a target video bit rate can be
first calculated via a heuristic formula that maps the incom-
ing video bit rate and the viewing conditions to a target video
bit rate for video teleconferencing type of content and then
passed to the conventional video encoder. Lastly, the MCU
sends the encoded video frame to Client 1.

3.2. Inferring the Viewing Distance

A well known approach to estimating the viewing distance is
to estimate the depth information, which can be done by us-
ing dedicated sensors such as infra-red and ultrasonic sensors.
Exemplary schemes include Microsoft Kinect [10] and those
in [11][12]. However, the existence of such dedicated sensors
on the clients may not be guaranteed in practice. In addition,
these sensors may collect information other than the viewing
distance, raising concerns about privacy. Therefore, this ap-
proach may not be the best to the wide deployment of user
adaptive video coding.

A less known but more attractive approach is to analyze an
image without using any custom sensor, as explained in Fig. 2
with a top-down view of the setup. The viewing distance,
i.e., the distance between the eyes and the lens, is denoted as
s1. We use the face detection capability of the open source
computer vision (OpenCV) [13] library to detect the face and
identify the pupils on an image, and then measure the inter-
pupil distance d on the image in pixels. The field of view
(FOV) or viewing angle of the camera is β. The distance
between the lens and the image sensor is s2. The width of the
image is w (in pixels). The real-world inter-pupil distance is
D. The viewing angle of the eyes is α. It is easy to get the
viewing distance

s1 =
D

2 tan(α/2)
, (3)

where

α = 2 arctan

(
tan

(
β

2

)
d

w

)
. (4)

It is shown that the value of D for most adults varies in the
range from 50 to 75mm [14]. A population average 63mm is
used in our estimation. The accuracy will improve if D can
be calibrated.

A similar but less accurate method is proposed in [15].
The only difference is that the approximations tan(x) ≈ x
and arctan(x) ≈ x are used in [15]. As a result, instead of
having (4), which is exact, [15] has α = βd/w. The approxi-
mation is inaccurate for large β.

3.3. Determining the pixel density

Without explicit signaling from the clients to the MCU to in-
form the latter of the pixel density of the display, the MCU
has to extract such information from the control messages sent

d
Left eye

Right eye
w

s1

s2

Lens

D

Fig. 2. The calculation of the viewing angle.

by the clients. The control message we exploit is the HTTP
request messages, where the UserAgent field often contains
the device information and the operating system information.
As an example, Android devices provide detailed information
about the device type, and the MCU can look up a device ta-
ble to find the pixel density and the reflectivity of the display
on that device. The device table lists the pixel density and the
reflectivity of the display for all major devices and is updated
when a new device becomes available in the market.

3.4. User-adaptive video encoding

Once the viewing distance and the pixel density are deter-
mined, we can follow the procedures in [4][5] to perform
user-adaptive video encoding. Specifically, the contrast sen-
sitivity is determined for each location in a video frame. The
contrast sensitivity takes into account factors such as the con-
trast of each location in the video frame, the ambient lumi-
nance, and the reflectivity of the display. Then a cutoff fre-
quency (in cycles per degree) is determined for each location.
The viewing distance and the display pixel density are then
used to convert the cutoff frequency from cycles per degree
to cycles per pixel. Next, these cutoff frequencies are used to
low-pass filter different locations of the video frame, and the
output is passed to a conventional video encoder. Finally, the
MCU transmits the encoded video frame to the client expect-
ing it.

4. IMPLEMENTATION

Our scheme is implemented in Licode (version 0.1.0) [9], an
open source MCU platform designed for WebRTC. Licode
sets up video teleconferencing sessions, and routes the media
and control traffic among endpoints (clients). The delivery
of the media follows a publishing/subscribing process: each
client publishes its own video, which is sent to the MCU, and
the other clients get the video by subscribing to the video
via the MCU. As mentioned in Section 3, since using user
adaptive video coding requires video decoding and encoding,
functions which the original Licode does not provide, we in-
tegrate the VP8 video codec with Licode, where VP8 is used
in WebRTC.



As described in Section 3, the MCU needs both the inter-
pupil distance d and the pixel density of the display in order
to infer the viewing distance. To get d, we write a face detec-
tion module which makes use of the OpenCV library APIs.
The pixel density of the display is obtained as follows. When
a client connects to the MCU, it automatically downloads a
Javascript program, which inspects the UserAgent field of
the outgoing HTTP request messages to extract the device
type information, which is then sent across the network to
the MCU for table lookup. The table is locally maintained on
the MCU, and it lists device types along with the respective
display pixel densities.

The enriched Licode runs on a Linux Ubuntu 12.04 com-
puter which serves as the MCU. The clients are Chrome web
browsers, each running on a MacBook laptop. To capture
the effect of Internet latency, we add artificial delays on each
client using the Linux tc utility.

5. PERFORMANCE EVALUATION

The one-way delay from each client to the MCU is set to
50ms, which results in an RTT of 200 ms between the two
clients. In the experiment, there are two subjects, each look-
ing at a laptop, which is connected via a simulated network to
the MCU.

We look at the video bit rate savings resulted from user
adaptive transcoding. In the experiment, the viewing distance
is fixed at 25 inches. Figure 3(a) shows the arrival bit rate
(blue solid line) and the departure bit rate (red dashed line) as
functions of time for the case where user adaptive transcoding
is used in the MCU. Let the average arrival bit rate be ra, and
the average departure bit rate be rd. The bit rate savings, i.e.,
η := (ra− rd)/ra, is 36.7%. As comparison, we also plot the
bit rates in Fig. 3(b) for the case where user adaptive transcod-
ing is not used, with the average arrival bit rate denoted as Ra

and the average departure bit rate as Rd. The reduction in the
bit rates (Ra−Rd)/Ra is only 2.7%. Since the contents of the
videos are similar in the two cases, we can compare the two
departure bit rates. The reduction in the average departure bit
rates, i.e., (Rd − rd)/Rd, is 26.9%. We do the experiment 10
times, and the average bit rate savings is 25%. The more se-
vere fluctuation in the arrival video bit rate in Fig. 3(a) is due
to the impact of not implementing Google Congestion Con-
trol (GCC) [8] in the MCU, and the difference in the arrival
video bit rate between Fig. 3(a) and Fig. 3(b) will go away if
GCC is implemented in the MCU.

To confirm that our scheme does not lead to significant
degradation in subjective video quality as predicted by the
theory, we carry out subjective testing. There are 20 subjects,
and we use 3 viewing distances: 20 inches, 25 inches and
30 inches. We ask each subject to evaluate the quality of the
video captured and delivered across the network in real time
during a video teleconferencing, and the evaluation method is
a 5-grade scale where 1 is for bad, 2 for poor, 3 for fair, 4 for

0 10 20 30 40 50 60

2

4

6

8

10

12

14

16

18
x 10

5

Time (sec)

B
it 

R
at

e 
(b

ps
)

 

 

arrival
departure

0 10 20 30 40 50 60

2

4

6

8

10

12

14

16

18
x 10

5

Time (sec)

B
it 

R
at

e 
(b

ps
)

 

 

arrival
departure

(a) (b)

Fig. 3. The arrival video bit rate (blue solid line) v.s. the
departure video bit rate (red dashed line), for the cases of user
adaptive transcoding (a) being turned on, and (b) being turned
off.

good, and 5 for excellent. The results are shown in Fig. 4. We
see that with 95% confidence interval, the use of user adap-
tive video coding does not result in degradation in subjective
video quality.

20 25 30
1

2

3

4

5

Viewing Distance (inches)

M
O

S

 

 

Without user adaptive transcoding
With user adaptive transcoding (proposed)

Fig. 4. Subjective testing scores for the case where user adap-
tive transcoding is used (blue stars) and the case where user
adaptive transcoding is not used (red circles). The error bars
stand for 95% confidence intervals.

6. CONCLUSION

We propose a network-based transcoding scheme for video
conferencing to improve the video coding efficiency using
perceptual pre-filtering. By analyzing the video sent from a
client, the MCU infers that client’s viewing conditions, which
are then used to adapt the encoding of the video destined to
the client. The scheme is implemented in a real-world video
teleconferencing system. Experimental results show that
our approach can significantly save the bandwidth without
affecting subjective video quality.

Acknowledgement: The authors would like to thank Dr.
Rahul Vanam, Dr. Louis Kerofsky, Dr. Ariela Zeira and Dr.
Robert A. DiFazio of InterDigital for insightful discussions.



7. REFERENCES

[1] F. W. Campbell and J. G. Robson, “Application of
fourier analysis to the visibility of gratings,” J. of Phys-
iology, vol. 197, no. 3, pp. 551–566, Aug. 1968.

[2] J. Movshon and L. Kiorpes, “Analysis of the develop-
ment of spatial contrast sensitivity in monkey and hu-
man infants,” J. Opt. Soc. Am. A, vol. 5, no. 12, pp.
2166–2172, Dec. 1988.

[3] P. Barten, Contrast Sensitivity of the Human Eye and Its
Effects on Image Quality, SPIE Press, 1999.

[4] Rahul Vanam and Yuriy A. Reznik, “Perceptual pre-
processing filter for user-adaptive coding and delivery
of visual information,” in Picture Coding Symposium
(PCS), 2013, pp. 426–429.

[5] Rahul Vanam, Louis Kerofsky, and Yuriy A. Reznik,
“Perceptual pre-processing filter for adaptive video on
demand content delivery,” in IEEE International Con-
ference on Image Processing (ICIP), 2014, pp. 2537–
2541.

[6] W. Chen, L. Ma, G. Sternberg, Y. Reznik, and C.-C.
Shen, “User-aware dash over wi-fi,” in International
Conference on Computing, Networking and Communi-
cations (ICNC), 2015.

[7] Y. A. Reznik et al., “User-adaptivemobile video stream-
ing,” in Visual Communications and Image Processing
(VCIP), 2012.

[8] WebRTC, “http://www.webrtc.org/,” Available Online,
2014.

[9] Licode, “http://lynckia.com/licode/,” Available Online,
2014.

[10] K. Khoshelham, “Accuracy analysis of kinect depth
data,” International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol.
38, no. 5, pp. 133–138, 2010.

[11] C. Harrison and A. K. Dey, “Lean and zoom: proximity-
aware user interface and content magnification,” in ACM
SIGCHI Conference on Human Factors in Computing
Systems, 2008, pp. 507–510.

[12] C. Dickie, R. Vertegaal, C. Sohn, and D. Cheng, “Eye-
look: using attention to facilitate mobile media con-
sumption,” in ACM Symposium on User Interface Soft-
ware and Technology, 2005, pp. 103–106.

[13] OpenCV, “http://opencv.org/,” Available Online, 2014.

[14] N. A. Dodgson, “Variation and extrema of human inter-
pupillary distance,” in Proc. SPIE, 2004, vol. 5291, pp.
36–46.

[15] J. Dostal, P. O. Kristensson, and A. Quigley, “Estimat-
ing and using absolute and relative viewing distance in
interactive systems,” Pervasive and Mobile Comput-
ing 10 (2014) 173186, vol. 10, pp. 173186, Feb. 2014,
Available online July 2012.


