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ABSTRACT 

In this paper, an efficient algorithm for implementing 
MDCT/IMDCT of lengths 5 2mN = ⋅ ( 2m ≥ ) is presented. 
Transforms for such lengths are of interest for speech and 
audio coding applications, such as recently issued and/or 
emerging standards G.729.1, G.EV-VBR, and EVRC-WB. 
In our design we utilize a mapping of MDCT of size N into 
N/2-point DCT-IV and DCT-II with isolated pre-
multiplications, which are subsequently moved in the 
windowing stage. We show that such a modified window is 
piece-wise symmetric, and can be stored using N/2 words. In 
our algorithm we also use an efficient factorization of 5-
point DCT-II which requires only 4 multiplications by 
irrational factors. We compare our proposed algorithm with 
several alternative implementations and show that our design 
offers practically appreciable reduction in complexity and 
memory usage. 

Index Terms— Speech coding, Audio coding, FFT, 
DCT, MDCT, Factorization, Fast algorithms. 
 

1. INTRODUCTION 

The Modified Discrete Cosine Transform (MDCT) is widely 
used in speech and audio coding as analysis/synthesis filter 
bank with time domain alias cancellation property [1]. 
It usually represents one of the most computationally 
intensive parts of the codec and hence there exists a need for 
fast algorithms for implementing it.  

This problem is well known, well studied, and 
numerous efficient algorithms have been proposed for 
solving it [2-8]. Many of these proposed algorithms are 
derived for transforms of lengths N = 2m. Among other 
transform sizes, ones including a factor of 3 (as prompted by 
the design of MP3 audio codec [9]) have also been 
thoroughly studied [10-11]. Treatment of transforms of other 
sizes, however, appears to be somewhat sketchier, and 
engineers are often left with the necessity to modify or 
combine some of these techniques in their designs. 

The need for transforms of sizes 5 2mN = ⋅  ( 2m ≥ ), 
which we will consider in this paper, arises in the design of 

speech and audio codecs, which typically operate with 
sampling rates of 8kHz or 16kHz and have to use frames 
with only 10ms or 20ms delay. Examples of such algorithms 
include recently standardized ITU-T G.729.1, and 3GPP2 
EVRC-WB vocoders [12,13], and an emerging ITU-T 
G.EV-VBR standard [14].  

The algorithm described in this paper offers a simple 
and practical implementation of transforms, suitable for use 
in speech and audio coding applications.  

The rest of this paper is organized as follows. In 
Section 2, we explain the mapping of the MDCT into a 
DCT-IV and DCT-II with isolated pre/post- multiplications, 
allowing their subsequent absorption by the windowing 
stage. In Section 3, we describe an efficient implementation 
of 5-point DCT-II algorithm, adopted in our MDCT design. 
The design of the merged window is discussed in Section 4. 
Finally, in Section 5 we characterize the overall complexity 
of our proposed algorithm and compare it with other 
possible implementations. 
 

2. MAPPING OF MDCT IN DCT-IV AND DCT-II 

Let { ( )}, 0,..., 1x n n N= −  represent an input sequence of  
samples, and N denote the frame length. In this paper we 
consider MDCT and inverse MDCT (IMDCT), defined 
respectively as follows: 
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where X(k) are the resulting MDCT coefficients and ( )x n are 

the reconstructed samples. For convenience, we ignore the 
normalization factors in all definitions.  

By adopting the matrix notation proposed in [15], we 
define the (N/2× N) MDCT matrix M: 

0, ..., 1,
2( , ) cos

0 , ..., 1 .
2 1 (2 1) ,

2 2

Ni
M i j

j N

N
j i

N

π = −
=

= −

⎛ ⎞⎛ ⎞+ + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

and write: 
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Fig. 1. Implementation of IMDCT using DCT-IV 
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We next map MDCT and IMDCT into an N/2-point DCT-IV 
as follows [15]: 
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IN/4 and JN/4 are N/4× N/4 identity and order reversal 
matrices correspondingly, 
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Fig. 2. Implementation of DCT-IV using IDCT-II 
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and /2
IV
NC  is an N/2× N/2 DCT-IV matrix, defined as 
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By using the symmetry and involutory properties of the 
DCT-IV matrix, it can be mapped into DCT-II as 
follows [16]: 
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and /2
II
NC  is an N/2× N/2 DCT-II matrix defined as 
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We illustrate these transformations in Fig.1 and Fig. 2. 
It can be seen that the post multiplications contributed by the 
matrix D can be merged with the windowing operation that 
follows IMDCT. This saves N/2 multiplications and N/2 
words of memory otherwise used for storing these factors.  

The flow graphs for forward transform (MDCT) can be 
obtained by transposing the flow graphs for IMDCT. 

We next are tasked with an efficient implementation of 
forward and inverse DCT-II. Since we have a factor of 5 in 
N, we require an algorithm that can handle any even length 
sequence. For this purpose we adopt the algorithm of 
C.W. Kok [16], which essentially is decimation-in-frequency  
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Fig. 3. Implementation of a 10-point inverse DCT-II 

 
strategy and which can be executed recursively until we are 
left with a DCT of size 5. We present the flow-graph of this 
process for a transform of size 10 in Fig. 3. 

 
3. FAST 5-POINT DCT-II 

As a basis for our 5-point DCT-II we have used an algorithm 
proposed by M.T. Heideman [17]. We have modified this 
algorithm by replacing a section with 3 multiplications and 3 
additions between coefficients x(3) and x(4) with the 
standard planar rotation, and did a similar simplification in 
the processing path of coefficients x(0) and x(2). These 
changes shorten critical path length, improve structural 
regularity, and reduce dynamic range of values within the 
transform.  

The flow graph of our forward DCT-II is shown in Fig. 
4. The algorithm can be implemented with just 4 non-trivial 
multiplications and 14 additions. The equations for inverse 
DCT implementation are given below: 
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4. MODIFIED WINDOW FUNCTION 

As discussed in Section 2, the pre and post multiplications 
involved with DCT-IV in MDCT and IMDCT respectively 
can be merged with the window function. In most practical 
cases MDCT is used with the following window function 
(which is commonly referred to as “sine window”): 
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Fig. 4. Five-point forward DCT-II 
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In our case, the combination of transform factors with this 
window produces the following modified window function: 
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Hence the window is piece-wise symmetric. This is 
illustrated in Fig. 5 (N = 640). This means that, compared to 
the symmetrical sine window,  this window can be stored 
using the same amount of memory.  
 

5. COMPLEXITY ANALYSIS AND COMPARISON 

Assume N = 5.2m ( 2m ≥ ) and let N1 = 2m. Let RMF(N) and 
RAF(N) be, respectively, the multiplicative and additive 
complexities of an N-point MDCT. Let RMI(N) and RAI(N) 
be, respectively, the multiplicative and additive complexities 
of an N-point IMDCT. Let RMD(5) and RAD(5) be, 
respectively, the multiplicative and additive complexities of 
the fast 5-point DCT-II. Then the computational complexity 
of the proposed MDCT/IMDCT plus windowing operation 
is given by 
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Fig. 5. Modified window function 

  
In Table 1, we present the results of complexity 

comparison of our algorithm with two possible implement-
tations of MDCT of size N=640 using the well-known 
V. Britanak and K.R Rao’s algorithm [10]. In first case, we 
assume that DCT-II of size 5 is implemented using straightforward 
matrix multiplication, and in the second case, we use same 5-point 
DCT-II as in our proposed algorithm. The complexity numbers 
presented in Table 1 include the complexity of windowing 
operation. This table also presents estimated ROM memory 
requirements for these algorithms.   
 

6. CONCLUSIONS 

We presented an efficient algorithm for MDCT and IMDCT 
for lengths that are of the type N = 5.2m. This algorithm 
utilizes several advanced techniques for reduction of 
complexity and can be of immediate interest for speech and 
audio coding applications. 
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