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Abstract—We propose simple parametric models for 
predicting visual quality scores on different devices in multi-
screen systems. As input parameters, the proposed models take the 
distortion measure for the encoded video and parameters of 
viewing setup: the resolution of projected video, size of the display, 
and viewing distance. We derive models for the following 
distortion measures: PSNR, SSIM, VIF, and VMAF. We validate 
the proposed models by using datasets corresponding to three 
different reproduction environments: standard TV sets, UltraHD 
TV sets, and mobiles. The obtained results confirm the improved 
accuracy of the prediction of MOS scores by the proposed 
techniques. The paper also includes introductory material 
explaining the usefulness of parametric quality for the analysis 
and optimizations of multi-screen video systems. 
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I. INTRODUCTION 

A. Quality-related problems in multi-screen systems 
Most modern-day streaming services deliver videos on many 

devices: TVs, PCs, tablets, mobiles, and others. Such devices 
have different characteristics of their screens and parameters of 
viewing setups: typical viewing distance, viewing angle, 
ambient illuminance, etc. Consequently, the same videos 
encoded at the same resolutions and bitrates may appear 
differently on different devices, resulting in different MOS 

scores in the subjective tests. Such differences are critical for 
understanding of the performance of multiscreen systems and 
posing the related optimization problems. 

To explain this more specifically, let us consider an HLS [1] 
or DASH [2]-based adaptive bitrate (ABR) streaming system, 
presented in Figure 1. In this system, an input video (mezzanine) 
is encoded into 𝑛𝑛 streams, with resolutions 𝑊𝑊1 × 𝐻𝐻1, … ,𝑊𝑊𝑛𝑛 ×
𝐻𝐻𝑛𝑛  and bitrates 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛 , respectively. These streams are 
subsequently placed on an origin server connected to a CDN. 
The origin also receives an HLS or DASH manifest file, 
describing properties of such streams. On the receiving end, we 
may have 𝑘𝑘  possible devices with different form factors and 
viewing setup parameters 𝜉𝜉1, … , 𝜉𝜉𝑘𝑘. Such devices may then pull 
any combinations of segments/chunks from the encoded streams 
from the CDN, as needed to facilitate continuous playback. In 
practice, the stream selection logic in players is typically driven 
by several considerations, such as device capabilities, network 
conditions, video player sizes, and others. Additional details 
about operation of ABR systems can be found in [3-9]. 

In order to measure codec-introduced distortions in each 
encoded streams, it is sufficient to produce 𝑛𝑛  quantities: 
𝐷𝐷1, … ,𝐷𝐷𝑛𝑛. I.e., one distortion value (e.g., PSNR or SSIM [10]) 
per each stream. However, since in this system, the receiving 
devices are different, and we are ultimately interested in Quality 

 
 
Fig. 1. Example of a multi-screen video delivery system using HTTP-based adaptrive bitrate (ABR) streaming framework. 
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of Experience (QoE) and not just distortions, we have to 
consider a matrix of 𝑘𝑘 × 𝑛𝑛 parameters:  

𝑄𝑄 = �
𝑄𝑄11 ⋯ 𝑄𝑄1𝑛𝑛
⋮ ⋱ ⋮
𝑄𝑄𝑘𝑘1 ⋯ 𝑄𝑄𝑘𝑘𝑘𝑘
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corresponding to MOS scores, measured for all streams and on 
all receiving devices. Having such a matrix, we can 
subsequently express the average quality achievable for each 
device: 

𝑄𝑄�𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖 ,
𝑛𝑛

𝑗𝑗=1

  𝑖𝑖 = 1, … , 𝑘𝑘 

as well as the average quality across all devices: 

𝑄𝑄� = �𝑣𝑣𝑖𝑖

𝑘𝑘
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𝑄𝑄�𝑖𝑖 . 

The weight factors 𝑝𝑝𝑖𝑖𝑖𝑖  and 𝑣𝑣𝑖𝑖  in the above expressions 
correspond to load probabilities of each stream on each device, 
and relative volume of content pulled by each device, 
respectively. 

By further noting that quality scores 𝑄𝑄𝑖𝑖𝑖𝑖  are influenced by 
stream bitrate and resolution parameters as well as parameters 
of reproduction devices:  

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗,𝑊𝑊𝑗𝑗 ,𝐻𝐻𝑗𝑗 , 𝜉𝜉𝑖𝑖�, 

we can pose several related optimization problems.  

 For example, we can pose a problem of the design of 
encoding profiles (choices of bitrates and resolutions for 𝑛𝑛 
streams [11,12]), such that the average quality delivered by the 
system (for given limits on average bitrates 𝑅𝑅�max,i) is maximal: 

𝑄𝑄�∗ = max
𝑅𝑅1,…,𝑅𝑅𝑛𝑛, 𝑊𝑊1,…,𝑊𝑊𝑛𝑛, 𝐻𝐻1,…,𝐻𝐻𝑛𝑛
∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ≤ 𝑅𝑅�max,i
𝑛𝑛
𝑗𝑗=1 ,𝑖𝑖=1,..,𝑘𝑘
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�𝑝𝑝𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗 ,𝑊𝑊𝑗𝑗,𝐻𝐻𝑗𝑗 , 𝜉𝜉𝑖𝑖�,
𝑛𝑛
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An alternative problem can also be posed by considering 
relative quality gaps: 

𝛿𝛿𝑖𝑖𝑖𝑖 =
𝑄𝑄𝑖𝑖∗ − 𝑄𝑄𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖∗

, 

where 𝑄𝑄𝑖𝑖∗ denotes maximum quality achievable on 𝑖𝑖th device: 

𝑄𝑄𝑖𝑖∗ = 𝑄𝑄𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗 → ∞,𝑊𝑊𝑗𝑗 → ∞,𝐻𝐻𝑗𝑗 → ∞, 𝜉𝜉𝑖𝑖� 

Using such relative scores, the problem can be posed as follows: 

𝛿𝛿̅∗ = min
𝑅𝑅1,…,𝑅𝑅𝑛𝑛, 𝑊𝑊1,…,𝑊𝑊𝑛𝑛, 𝐻𝐻1,…,𝐻𝐻𝑛𝑛
∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 ≤ 𝑅𝑅�max,i
𝑛𝑛
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   𝑖𝑖
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In other words, we minimize the worst-case average quality gap 
across all devices. This setting allows the problem to be posed 
without exact knowledge of content usage distribution across 
devices, and without the risk of biasing the solution to benefit 
the most intensively used device while delivering suboptimal 
performance on the others.  

 However, as we can see, in both problem settings, the 
availability of quality estimates Qij specific for each device is 
essential. Examples of various additional optimizations 
problems utilizing quality estimates on different devices can be 
found in [13,14].  

B. The problem addressed by this paper 
 In this paper we propose a set of simple parametric quality 
models, allowing full matrix of per-device quality values [𝑄𝑄𝑖𝑖𝑖𝑖] 
to be easily computed by using a set of 𝑛𝑛  distortion values 
𝐷𝐷1, … ,𝐷𝐷𝑛𝑛 computed once for each stream, and 𝑘𝑘 viewing setup 
parameters 𝜉𝜉1, … , 𝜉𝜉𝑘𝑘  corresponding to each category of 
receiving devices. In other words, what we propose are model 
functions: 

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄�𝐷𝐷𝑗𝑗 , 𝜉𝜉𝑖𝑖�, 𝑖𝑖 = 1, . . . , 𝑘𝑘, 𝑗𝑗 = 1, … ,𝑛𝑛. 

 These models effectively reduce the problem of assessment 
of quality on each device to a simple computation of distortions 
(e.g., using basic metrics such as PSNR, or SSIM) for each 
stream, and then applying a formula combining such distortion 
measures with other quality-influencing factors for each device 
to arrive at final predicted quality scores. 

C. Benefits 
 The main benefit of the proposed models is reduced 
complexity. Instead of computing quality scores many times and 
customarily for each stream and device parameters, and using 
sophisticated QoE tools (such as e.g., Tektronix PQA [15,16]), 
the proposed approach enables the distortion measures to be 
computed only once per each stream, and then reused for 
arriving at quality estimates for all devices.  

The added benefit of the proposed approach are simple 
mathematical forms of coupling the distortion values with 
device-specific parameters. These could lead to simplifications 
in related optimization problems.  

The separation of distortion also allows simple modeling of 
the performance of the encoder. Effectively, the design of 
models for quality-rate functions 𝑄𝑄𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗,𝑊𝑊𝑗𝑗 ,𝐻𝐻𝑗𝑗 , 𝜉𝜉𝑖𝑖�  is reduced 
to producing models of operational distortion-rate functions 
𝐷𝐷𝑗𝑗(𝑅𝑅𝑗𝑗), which is a much simpler and better understood problem.  

 And finally, as we will show, based on our experimental 
results, the proposed approach allows high accuracy QOE 
prediction even when using very simple distortion measures, 
such as PSNR or SSIM. Considering that such metrics are much 
simpler to compute than more sophisticated models, and that 
they only need to be computed at encoded video resolutions, and 
not in the upscaled (as displayed) domain, this makes the 
proposed approach even more appealing from complexity and 
ease of use standpoints. 

D. Related prior art 
Early studies on subjective image quality assessment reveal 

the importance of physical parameters like image resolution, 
image/display size, and viewing distance [17-23]. Specifically, 
Westerink and Roufs [17] have found that at a constant viewing 
distance the subjective quality of still pictures was influenced 
independently by both the angular resolution and the size of the 
displayed picture. Barten [18,19] has confirmed same effects by 



using his SQRI method [19]. Most recently, this model was also 
generalized and validated based on data in modern datasets [24]. 

Much more sophisticated models, attempting to model 
different perceptual effects at optical, retinal, and visual cortex 
levels have also been proposed. They all naturally require 
parameters of viewing setups for calibrations. Good examples of 
such models include VPD [25], Sarnoff model [26], the model 
of Teo and Heeger [27], and others [28]. However, most of these 
models are pretty complex and have found only limited use in 
practical applications. Perhaps best known become Sarnoff 
model [26], due to its inclusion in Tektronix PQA analyzers 
[15,16].   

Fast forwarding to modern practice, we notice that most 
modern objective quality metrics are purely distortion-based. 
Good examples are PSNR and SSIM [10]. The both compute 
summary statistics of differences between pixels in the original 
and decoded video. VIF [29] is a bit more sophisticated. It looks 
at logarithmic (information) differences, considering particular 
statistical models of visual information. But fundamentally, it 
still measures the differences between the original and 
reconstructed images.  

VMAF [30,31] is another popular modern-era metric, using 
SVM for turning VIF and several additional metrics into final 
quality scores. However, as explained in [30], it is trained by 
using a database [32] with DMOS scores and measured in a 
single and very specific viewing environment: ITU-R BT-
500 [33] setup. In other words, by design, VMAF is meant to 
predict DMOS in one specific environment, and not MOS scores 
across different platforms.  

As it becomes evident from this review, most metrics that 
are broadly used in today’s practice are simply not appropriate 
for the analysis of relative quality effects in multi-screen 
systems.  The objective of this paper, therefore, is to bridge the 
gap between popular metrics that are broadly available and an 
application that needs device-specific quality assessments.    

E. Outline 
 In Section II, we describe our proposed models and explain 
the reasoning behind them. In Section III, we conduct the 
experimental study, assessing the performance of the proposed 
models on datasets with MOS scores measured on three different 
categories of receiving devices. In Section IV, we offer 
conclusions. 

II. PARAMETRIC QUALITY MODELS 

A. Distortion metrics used as input 
In this work, we will assume that the amount of codec-

introduced noise (distortion) in each stream is measured by 
either PSNR, SSIM, VIF or VMAF metrics. In all cases, we will 
further assume that such metrics are computed at same 
resolutions as video is encoded, and hence they only 
characterize the code-added noise (distortion) aspects, and not 
the effects of scaling.  

B. Viewing setup parameters  
We will further assume, that for each reproduction device we 

may know its resolution 𝑊𝑊𝑑𝑑 × 𝐻𝐻𝑑𝑑  [in pixels], and relative 
viewing distance 𝜂𝜂, expressed in display heights. If instead of 

relative distance 𝜂𝜂, we know the absolute viewing distance d [in 
inches], then display pixel density 𝜌𝜌  [in pixels per inch] or 
physical dimensions of the screen [in inches] will also be needed 
to construct the model.  

In order to define quality model, we will use two angular 
parameters: 

• viewing angle 𝜙𝜙 [in degrees] – capturing the horizontal 
angular size of video, as seen by the viewer on the 
screen, and 

• angular resolution 𝑢𝑢 [in cycles per degree] – expressing 
the highest possible spatial frequency that may be 
present in the encoded video. This is effectively 
translation of Nyquist frequency reproducible by the 
video to cycles per degree units.  

We provide formulae connecting the above angular parameters 
to standard parameters of viewing setup in Table I.  

TABLE I.  RELATIONSHIPS BETWEEN PARAMETERS OF VIEWING SETUP 

Parameter  Notation / formula Units 
Height of encoded video 𝐻𝐻 Pixels 
Width of encoded video  𝑊𝑊 Pixels 
Height of displayed video  𝐻𝐻𝑝𝑝 Pixels 
Height of displayed video 𝑊𝑊𝑝𝑝 Pixels 

Display pixel density 𝜌𝜌 Pixels 
per inch 

Viewing distance in inches 𝑑𝑑 Inches 
Viewing distance in 
display heights 𝜂𝜂 =

𝑑𝑑𝑑𝑑
𝐻𝐻𝑝𝑝

 Display 
heights 

Horizontal viewing angle 
𝜙𝜙 = 2 arctan�

𝑊𝑊𝑝𝑝

2𝑑𝑑𝑑𝑑
�

= 2 arctan�
𝑊𝑊𝑝𝑝

2𝜂𝜂𝐻𝐻𝑝𝑝
� 

Degrees 

Maximum horizontal 
spatial frequency 
(Nyquist) reproducible by 
the display 

𝑢𝑢𝑑𝑑 = �2 arctan �
1
𝑑𝑑𝑑𝑑
��

−1

= �2 arctan�
1
𝜂𝜂𝐻𝐻𝑝𝑝

��
−1

 

Cycles 
per 

degree 

Maximum horizontal 
spatial frequency (angular 
resolution) that can be 
present in encoded video 

𝑢𝑢 = �2 arctan�
𝑊𝑊𝑝𝑝/𝑊𝑊
𝑑𝑑𝑑𝑑

��
−1

= �2 arctan�
𝑊𝑊𝑝𝑝/𝑊𝑊
𝜂𝜂𝐻𝐻𝑝𝑝

��
−1

 

Cycles 
per 

degree 

 

C. Quality model based on viewing setup parameters 
As basic model of perceived quality based on the parameters 

of viewing setup, we will use the well-known model of 
J. Westerink and J. Roufs [17]. The specific formula that we will 
use in our work comes from [24]: 

𝑄𝑄𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢) = ln�𝑎𝑎 + 𝑏𝑏 �1 + � 𝜙𝜙
𝜙𝜙𝑠𝑠
�
−𝑘𝑘
�
−𝑐𝑐𝑘𝑘
�1 + � 𝑢𝑢

𝑢𝑢𝑠𝑠
�
−𝑙𝑙
�
−𝑑𝑑 
𝑙𝑙
�, (1) 

where 𝑎𝑎 = 2.718 , 𝑏𝑏 = 145.69 , 𝑐𝑐 = 1.55 , 𝑑𝑑 = 2.12 , 𝑘𝑘 =
6.01, 𝑙𝑙 = 2.11, 𝜙𝜙𝑠𝑠 = 35.0, and 𝑢𝑢𝑠𝑠 = 16.93 are the constants. 
This model predicts how the parameters of viewing setup (and 
specifically, viewing angle 𝜙𝜙, and angular resolution 𝑢𝑢) impact 
the perceived quality of videos projected on the screen.  



D. Quality models based on distortion measures 
 We are now ready to introduce parametric models proposed 
in this paper. In the most general form, they can be expressed as: 

𝑄𝑄(𝐷𝐷,𝜙𝜙,𝑢𝑢) = 𝛼𝛼 + 𝛽𝛽�1 + 𝛾𝛾𝑄𝑄𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢)� 𝑄𝑄𝐷𝐷(𝐷𝐷) 

 + 𝛿𝛿𝛿𝛿𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢),    (2) 

where 𝑄𝑄𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢)  is a Westerink-Roufs model, 𝑄𝑄𝐷𝐷(𝐷𝐷)  is a 
fitting function for translating distortion scores to MOS domain, 
and where 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 are the calibration constants.  

 We note, that in a special case when both parameters 𝛾𝛾 =
𝛿𝛿 = 0, the model (1) turns into a direct mapping of distortion 
scores to MOS: 

𝑄𝑄(𝐷𝐷) = 𝛼𝛼 + 𝛽𝛽 𝑄𝑄𝐷𝐷(𝐷𝐷).  (3) 

In a case when 𝛾𝛾 = 0, but 𝛿𝛿 > 0, the proposed model (1) treats 
the impacts of distortion (𝐷𝐷 ) and viewing factors (𝜙𝜙,𝑢𝑢 ) as 
additive terms in the overall quality expression: 

𝑄𝑄′(𝐷𝐷,𝜙𝜙,𝑢𝑢) = 𝛼𝛼 + 𝛽𝛽 𝑄𝑄𝐷𝐷(𝐷𝐷) + 𝛿𝛿 𝑄𝑄𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢). 

Finally, when 𝛿𝛿 > 0, but 𝛾𝛾 ≫ 1, the model uses multiplicative 
coupling of effects of distortion and viewing-related factors: 

𝑄𝑄′′(𝐷𝐷,𝜙𝜙,𝑢𝑢) ~ 𝛼𝛼 + 𝛽𝛽𝛽𝛽 𝑄𝑄𝑊𝑊𝑊𝑊(𝜙𝜙,𝑢𝑢) ⋅ 𝑄𝑄𝐷𝐷(𝐷𝐷). 

In other words, by using two fitting parameters 𝛾𝛾 and 𝛿𝛿 these 
models can exploit both additive and multiplicative effects in 
combinations of distortion-based and viewing-based factors.  

 For translation of PSNR, SSIM and VIF scores to MOS, we 
will use the standard logistics function: 

𝑄𝑄𝐷𝐷(𝐷𝐷) = 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) = 1
1+exp(−𝜀𝜀(𝐷𝐷−𝜁𝜁))

,  (4) 

where 𝜀𝜀 defines the slope, and 𝜁𝜁 defines the mid-point of this 
function. For translation of VMAF scores to MOS, we will use 
linear model: 

𝑄𝑄𝐷𝐷(𝐷𝐷) = 𝐷𝐷,    (5) 

since it is known that by design, VMAF is trained to operate at 
DMOS scale. 

 The full set of models and their parameters that we will be 
considering in this paper is presented in Table II.  

TABLE II.  PROPOSED QUALITY MODELS 

Quality models Distortion 
metric D 

Function 
𝑸𝑸𝑫𝑫(𝑫𝑫) 

Model 
formula 

Model 
Parameters 

WR+PSRN2MOS PSNR 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (2) 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 𝜀𝜀, 𝜁𝜁  
WR+SSIM2MOS SSIM 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (2) 𝛼𝛼,𝛽𝛽,𝛾𝛾, 𝛿𝛿, 𝜀𝜀, 𝜁𝜁 
WR+VIF2MOS  VIF 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (2) 𝛼𝛼,𝛽𝛽,𝛾𝛾, 𝛿𝛿, 𝜀𝜀, 𝜁𝜁 
WR+VMAF2MOS VMAF 𝐷𝐷 (2) 𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 
PSNR2MOS PSNR 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁  
SSIM2MOS SSIM 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁 
VIF2MOS VIF 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁 
VMAF2MOS VMAF 𝐷𝐷 (3) 𝛼𝛼,𝛽𝛽 
xPSNR2MOS ↑ PSNR 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁  
xSSIM2MOS ↑ SSIM 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁 
xVIF2MOS ↑ VIF 𝑓𝑓(𝐷𝐷, 𝜀𝜀, 𝜁𝜁) (3) 𝛼𝛼,𝛽𝛽, 𝜀𝜀, 𝜁𝜁 
xVMAF2MOS ↑ VMAF 𝐷𝐷 (3) 𝛼𝛼,𝛽𝛽 

 

 The top 4 models in Table II are our main parametric models 
translating distortions and viewing factors to MOS scores. These 
models use full set of parameters according to formula (2). We 
name them as “WR+<distortion>2MOS”, where distortion 
metric can be either PSNR, SSIM, VIF, or VMAF. In all cases, 
the distortion metrics are assumed to be computed at encoded 
video resolutions.  

 The remaining models define direct mappings between 
distortion metrics and MOS scores. They are defined by using 
simplified model formula (3). We will use them for comparison 
purposes. There are 2 sets of such models. The first set uses 
names “<distortion>2MOS”, with all same distortion metrics 
and their meanings as in first 4 models. The second set uses 
names “x<distortion>2MOS”, where prefix “x” implies that 
distortion is computed not at resolution as encoded, but rather in 
upscaled form, where both the original video and decoded one 
are upscaled to match the anticipated resolution of the display, 
and then distortion is computed by comparing such larger 
videos.  

III. EXPERIMENTAL STUDY OF THE PROPOSED MODELS 

A. Devices and datasets 
The parameters of target devices and data bases that we used 

in our work are summarized in Table III. These datasets come 
from several sources [30,34,35], and they all have been used 
extensively in studies on visual quality topics in the past.  

TABLE III.  DEVICES AND DATASETS USED IN THIS WORK 

Parameter UHDTV HDTV Mobile 
Dataset name & 
reference 

AVT-VQDB 
[34] 

Netflix 
[30] 

Mobile VQDB 
[35] 

User devices  55” and 65" 
UHTVs 

Consumer-grade 
TVs 

6.39" 
 smartphones 

Viewing 
distance 1.5H 3H 3.67H 

Display 
resolution  3840x2160 1920x1080 2340x1080 

Display area 
used  Full screen Full screen 1920x1080 

Viewing angle 
[degrees] 61.3 33 27.2 

Display Nyquist 
[cpd] 28.28 28.28 34.6 

Resolutions of 
encoded videos 
[pixelscpd] 

480x3604.71 
1280x7209.42 
1920x108014.1 
3840x216028.3 

384x2885.65 
512x3847.54 

720x48010.60 
1280x72018.85 
1920x108028.3 

1920x108034.6 

Color space / 
dynamic range BT.709 / SDR BT.709 /SDR BT.709 /SDR 

Number of 
videos 30 70 128 

 

As shown in Table III, our datasets include devices with a 
broad range of form factors: from 6” mobiles to 65” UHDTVs. 
The gap in relative viewing distances is also considerable: from 
1.5 to 3.67 heights. The smallest encoded resolutions are 288p, 
the highest 2160p. All videos in datasets are progressively 
scanned, have 16:9 DAR, BT.609 colors and SDR transfer 



functions. The data sets include many files with broad variety of 
visual content and artifacts introduced by transcoding them at 
different bitrates and resolutions.   

For our study, we have used absolute MOS scores (not relative 
or DMOS scores) as reported in the datasets. We did, however, 
recomputed all objective distortion metrics for videos in 
datasets. This was done to ensure consistency of our data. To 
compute all metrics, we used FFmpeg tool [36]. In computation 
of scaled metrics, Lanczos3 filter was used for upscaling. For 
PSNR and SSIM we have used Y-PSNR and Y-SSIM metrics 
as reported by FFmpeg. For VIF we used the averages of 4 VIF 
scores as reported by FFmpeg. For computation of VMAF we 
used libvmaf v2.3.0, integrated in the FFmpeg. Both upscaled 
and non-scaled versions of all 4 metrics have been computed. 

B. Fitting of models to dataset MOS scores  
 For fitting our models, a combined pool of data points was 
created, including all data points from Mobile data set, plus 2x 
replicated points from HDTV dataset, and 4x replicated data 
points from UHDTV dataset. These replication factors have 
been chosen to ensure that in the combined set, we have a 
balanced representation of data from each category of receiving 
devices. For finding model parameters (𝛼𝛼,𝛽𝛽, … , 𝜁𝜁) we have used 
MAPLE computer algebra tool [37], and specifically its 
Minimize function. The sum of square differences between 
model-predicted and actual MOS scores in the combined pool 
was used as an objective function for minimization.  

C. The results  
 The values of optimal parameters found for each of our 
models are summarized in Table IV.  

TABLE IV.  MODEL PARAMETERS  

Quality models 𝜶𝜶 𝜷𝜷 𝜸𝜸 𝜹𝜹 𝜺𝜺 𝜻𝜻 
WR+PSRN2MOS -6.906 6.130 -0.048 1.476 0.228 23.83 
WR+SSIM2MOS -7.181 7.662 -0.089 1.753 7.492 0.777 
WR+VIF2MOS  -12.09 12.117 -0.137 2.763 4.846 0.416 
WR+VMAF2MOS -7.682 0.0753 -0.122 2.01   
PSNR2MOS 0 3.86   0.216 23.49 
SSIM2MOS 1.106 2.863   11.751 0.789 
VIF2MOS 0.831 2.941   8.124 0.408 
VMAF2MOS 1.164 0.0286     
xPSNR2MOS 0 4.14   0.212 25.38 
xSSIM2MOS 0 6.414   4.963 0.865 
xVIF2MOS 0.305 5.461   4.127 0.598 
xVMAF2MOS 0.523 0.0428     

 

 The resulting RMSE accuracy values are provided in 
Table V. These values are provided separately for each dataset, 
as well as compound average RMSE value as computed across 
all sets. The lowest RMSE values in each category are shown in 
bold. 

D. Discussion  
 Based on results presented in Table V, we observe that the 
proposed combined distortion + viewing factors metrics achieve 
much higher accuracy of matching MOS scores than metrics that 
rely on distortion alone. The differences are particularly 
dramatic for simple metrics, such as PSNR and SSIM. E.g. we 

see that WR+PSNR2MOS reports 0.466 overall RMSE, while 
PSNR2MOS reports 0.908. Similarly, WR+SSIM2MOS reports 
0.441, while SSIM2MOS reports 0.893.  

TABLE V.  RMSE ACCURACY RESULTS ACROSS DATASETS  

Quality models UHDTV HDTV Mobile Average 
WR+PSRN2MOS 0.384 0.396 0.618 0.466 
WR+SSIM2MOS 0.369 0.423 0.532 0.441 
WR+VIF2MOS  0.356 0.389 0.362 0.369 
WR+VMAF2MOS 0.303 0.375 0.382 0.354 
PSNR2MOS 0.886 1.105 0.734 0.908 
SSIM2MOS 0.891 1.139 0.649 0.893 
VIF2MOS 0.901 1.170 0.583 0.885 
VMAF2MOS 0.830 1.103 0.629 0.854 
xPSNR2MOS 0.859 0.884 0.710 0.818 
xSSIM2MOS 0.839 0.842 0.592 0.757 
xVIF2MOS 0.418 0.739 0.470 0.543 
xVMAF2MOS 0.286 0.422 0.396 0.364 

 

 We also note that our proposed metrics outperform metrics 
relying on upscaling of videos to display resolution. As 
expected, upscaling shows somewhat improved performance, 
but the combination of non-scaled metrics using our parametric 
approach seems to work even better. This can be easily followed 
noting that RMSE for WR+PSRN2MOS ~ 0.466 vs 
xPSNR2MOS ~ 0.818, or that for WR+SSIM2MOS ~ 0.441 vs 
xSSIM2MOS ~ 0.757. 

 However, the most surprising is that all above improvements 
seem to stay in place not only for simple metrics such as PSNR 
and SSIM, but also for much more complex ones – VIF and 
VMAF, which both exploit multi-scale processing, and 
statistical models. We notice that WR+VIF2MOS achieves 
RMSE of 0.369, easily beating upscaled VIF: xVIF2MOS ~ 
0.543, and that WR+VMAF2MOS, computed without 
upscaling, achieves overall RMSE of 0.354, which is also better 
than overall RMSE of upscaled VMAF xVMAF2MOS ~0.364. 

 The only case, in which regular upscaled VMAF has 
performed better than our WR+VMAF2MOS, was in fit to 
UHDTV dataset. It seems that characteristics of this device are 
simply closer to the training dataset that was used in the design 
phase of VMAF. But then performance of scaled VMAF on 
other devices is worse, as well it is slightly worse overall.  

 These findings confirm the merits of our proposed technique 
of incorporating parameters of viewing setups for improved 
predictions of MOS scores on different devices.  

IV. CONCLUSIONS 
Several parametric models for predicting visual quality 

scores on different devices have been proposed. The proposed 
models utilize basic distortion metrics (PSNR, SSIM, VIF, or 
VMAF) and also use parameters of viewing setup to arrive at 
final predicted scores. The effectiveness of proposed models has 
been validated by using datasets with MOS measurements on 
standard TV sets, UltraHD TV sets, and mobiles. The obtained 
results confirm the improved accuracy of the prediction of MOS 
scores by the proposed techniques. Other practical benefits and 
applications of the proposed techniques are also discussed.  
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