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Abstract

We study the problem of coding of unordered sets of wordseappg in natural language processing,
retrieval, machine learning, computer vision, and othdddieWe note that this problem is different from the
problem of coding of a particular sequence of same words,stioe that up tdog, m! bits (wherem is the
number of words in the set) can be saved by specialized codefs. We propose one possible design of such
codes, and prove its asymptotic optimality in the memosy/lesdel.

. INTRODUCTION

The classic problem of source coding is to encode a gsemuence of wordr a messagew =
wy, W, . . ., With the goal of minimizing the number of bits needed fortsencoding. Most commonly,
it is further assumed that words must be decoded in the sades as they appear, and that the result
of decoding must be unique and matching the original. Thitingg coupled with the assumption
about stochastic nature of the source, has lead to many fuerdtal results and techniques, including
Shannon’s source coding theorem, Huffman codes, and ofblrs

Nevertheless, in practice, we may also encounter a slightigrent problem: the message may be
given by aset of words{w, ..., w,,}, where theirorder is not importantThis happens, for example,
when we formulate a request to a search engine by providirsj aflkeywords. Such keywords can be
communicated in any order, without affecting the meaninghef message. Given this flexibility, one
may expect a code constructed for a &et, ..., w,,} to consume aboubg, m! less bits than a code
constructed for a particular sequencg, . . ., w;,,. However, the construction of codes for unordered sets
does not appear to be entirely trivial: most existing soweging tools assume sequential processing.
Here we need something else.

The purpose of this paper is to offer one possible practigiaition for this coding problem. The key
tool that we employ comes from information retrieval: it igligital search treeor DST structure, due
to E. Coffman and J. Eve [9] (cf. [3], [10]). It is similar, in sense, to therefix treeor incremental
parsing ruleof J. Ziv and A. Lempel'sLZ 78 algorithm [19]. However, prefix tree always parses a
single sequence, while DST is designed to parse a set of segmeDST is also different from parsing
trees used by Tunstall codes [20], [22], CTW [23], and othmmventional source coding algorithms.
Once the DST is constructed, we u8acks rankingscheme [24] to compute its lexicographic index,
and then we transmit it. Finally, to encode parts of inputdsgothat were not “absorbed” by the tree
structure, we define a canonic order of nodes in the tree,randrhit missing parts of words according
to this order. We provide detailed analysis of the averagprance of this scheme in the memoryless
model, and show that it asymptotically approaches the eggécg, m! reduction in the bitrate.

Among related prior studies, we must mention 1986 work of Amipel [6], who defined a class
of multiset decipherable codeand shown that such codes should be more compact than ¢mmadn
(uniquely decipherable) codes when > 3. Another related class of codes (for words over partially
commutative alphabet) was studied by S. Savari [7]. Theeaalie performance bounds for coding
of sets were studied by L. Varshney and V. Goyal [8]. The ra&guction limit of log, m! bits in



Table |

EXAMPLE SET OF BINARY WORDS{w1, ..., Wm}.
Index Word DST path | Suffix
7 w; Di Si

1 01011 0 1011
2 00111 00 111
3 10001 1 0001
4 01010 01 010
5 10010 10 010
6 00001 000 01
7 00110 001 10
8 00000 0000 0
Bits: | 8 x5 =40 18 22

lossless regime was also obtained in [8], but without affgrany constructive process for reaching it.
Properties of DST and related structures were studied in [IB]-[16]. Techniques for coding of trees
were discussed in [24]-[26]. Descriptions of other knowesusf coding of trees in data compression
can be found in [28], [29], [34].

This paper is organized as follows. In Section Il we proviéggaded description of our algorithm.
In Section Ill, we study asymptotic performance of this soben the memoryless model. Section IV
contains discussion on practical relevance of this woskafplications, and conclusions.

II. CODING OF SETS OFWORDS

Let {wy,...,w,} be a set of words that we need to encode. For simplicity ofgmtasion, we will
assume that these words are binary, distinct, have the sangth|w;| = n, and produced by symmetric
memoryless sourcelhat is, characters “0” and “1” appear with same probabilit=1—p = 1/2
regardless of their positions or order. The entropy rateuchssource idl bit/character [1], implying,
that conventional sequential encoding of words. . . , w,, will cost at leastmn bits.

Hereafter, we will often refer to an example set of words ghdwable | (second column). In this
case:m = 8, n = 5, and total lengthnn = 8 x 5 = 40 bits.

A. Tree-based representation

In order to construct a more compact representation of these ..., w,}, we employ a data
structure, known asgligital search treeor DST [3], [9], [10]. We start with a single root node, and
assume that it corresponds to an empty word. We then pick mirviiord w;, and depending on the
value of its first character, we add left or right branch torbet node, and insert a new node there. We
also store pointer ta; in that node. With second and subsequent words, we travieesede starting
from the root node, by following characters in a current wanad once we hit the leaf (a node with no
continuation in the direction of interest), we extend it bgating a new node and storing pointer to the
current word in it. This process is repeatedtimes, so that all words from our input sgby, ..., w,,}
are inserted.

The DST structure constructed over our example set is shawsigure 1. The paths from root to
other nodes in the tree correspond to portions (prefixes)osflsvinserted in this structure. We list such
prefixes in the third column in Table I. The forth column in Teablists the remainders (suffixes) of each
word. In other words, we observe that DST construction &ffely “splits” wordsw; (i = 1,...,m) in
two parts:

Wi = Pi Sis



W1=0,1011 W3=1,0001

W2 =00,111

W4=01,010

W6=000,01 W7=001,10

Figure 1. Digital search tree (DST) structure constructeer @ur example set of words. We use commas to separate pneditct{ing
path from the root) and suffix parts of words.

Figure 2. Encoding of a binary tree. The numbers in nodes sitder in which they are visited during pre-order tree tras&f4]. Present
and missing nodes are labeled witls and0’s correspondingly. Scan of these labels produces a sequenre 1111100010010011000.

wherep; are prefixes covered by paths in the tree, andre the remaining suffixes. Overall lengths of
prefixes and the suffixes will be denoted by

Pm:Z|pz|> and Sm:Z|Si|:mn_Pm (l)
i=1 i=1

correspondingly. In our example, shown in Figure 1, the aV@®ST path length isP,, = 18, and the
length of the remaining suffixes iS,, = 40 — 18 = 22.

B. Encoding of a tree

Our next task is to encode the structure of the DST efficieMigre specifically, we need to encode
the shape of its binary tree. This tree contairs m + 1 nodes {n nodes associated with input words
+ root).

We start by scanning the tree recursively, by using preroir@de traversal [4], and assigning labels
“1” to the existing nodes, and "0” to missing ones (see FigeyeWe call the resulting sequence of



Table Il
COEFFICIENTSa;,; USED IN LEXICOGRAPHIC ENUMERATION OF TREES

J

0 1 2 3 4 5 6|78
1
2 1
5 3 1
14 9 4 1
42 28 14 5 1

132 90 48 20 6 1
429 297 165 75 27 7
1430 | 1001 572 275 | 110 35 811
4862 | 3432 | 2002 | 1001 | 429 | 154 | 44 | 9 | 1

—_
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labels anz-sequencelt is known, that this sequence contaitis+ 1 digits, and that it can serve as a
unique representation of a tree witmodes [2], [24]. Indeedy-sequence may also serve as a code, but
as we shall show, more compact representation is possible.

In general, it is known, that the total number of possibleeddiinary trees with nodes is given by
the Catalan number [2, Section 2.3.4.4]:

1 21
C”‘Hl(z‘)’ @
implying, that a tree can be uniquely represented by only
[log, C;] ~ 2i— 2logyi+ O (1) [bits]. (3)

We next briefly describe one possible coding technique [Bd] &chieves this rate.

Given anz-sequence for a tree, we produce a list of positions of systidl in it. We will call it
a z-sequence: = zy,..., z. For example, for a sequenae= 1111100010010011000, corresponding
to a tree in Figure 2, we produce:= 1,2,3,4,5,9,12,15,16. We next define a rule for incremental

reduction ofz-sequences. Let* be the larges§, such that; = j. By z* = 27,..., 2/, we will denote

a new sequence that omits value, and subtract8 from all subsequent values in the original sequence:
o= Zj, jzl,,j*—l,
J Zj+1_27 ]2]*

Then, a lexicographic index (&aks rank of a tree is recursively computed as follows [24]:
. 1, if j* =1
index(z) = { a; j+ +index(z*), if j* <4, ()

where

aij:—].+2‘(.2l._] >7 O<j<i—1
’ 20—3\1—j5—1

are some constants (see Table II).



For example, for a tree in Figure 2, Zaks ranking algorithinpgbduces:

index(1,2,3,4,5,9,12,15,16) = ags + index(1, 2,3,4,7, 10,13, 14);
index(1,2,3,4,7,10,13,14) = agy + index(1,2,3,5,8, 11, 12);
index(1,2,3,5,8,11,12) = a73+index(1,2,3,6,9,10);
index(1,2,3,6,9,10) = a3+ index(1,2,4,7,8);
index(1,2,4,7,8) = a5+ index(1,2,5,6)
index(1,2,5,6) = ay2+index(1,3,4)

index(1, 3,4) (1,2)
index(1, 2)

= agz; +index

resulting in

index(l, 2, 3, 4, 5, 9, 12, 15, 16) = CL975 + CI,874 + CL773 + a673 + a572 + a472 + CI,371 + 1
= 1544110475 +20+144+4+3+1
= 381.

The code of this tree is 8log, C,,11| = [log, Cy] = 13 bits-long binary record of its index:
Biniog, 0,11 (index) = Biny3(381) = 0000101111101.

As easily observed, this code is shorter th@at + 1)+ 1 = 19 bits used by our-sequence, and notably,
it is also shorter tharP,, = 18 bits of prefix data stored in this tree.
We are now ready to describe the remaining steps in our castihgme for sets of words.

C. Coding of sets of words

Given a set ofn words{wy,...,w,}, the proposed algorithm performs the following operations

1) Build, encode, and transmit DST structure over the inpt{s, ..., w,,};

2) Scan the tree recursively, and define a canonic order oésnaehd the corresponding prefixes

Diys- -+, Di,, In the DST,

3) Encode and transmit suffixes according to same osger. ., s;, .

The construction of the DST structure and its encoding ifop@red as discussed in previous sections.
To define a canonic order of nodes we use the standard pre-wedetraversal [4], and assign each
node a serial number, starting with assigned to the root node (see Figure 3). As we reagcthanode
during the traversal, we can also recover prefix of a woydthat was inserted in it. This produces an
orderiy, ..., i, in which prefixes of all words from our set can be retrievedrfrihe tree. We omit the
root node (and empty word that it contains) in this sequeRoe.example, for a tree in Figure 3, this
producesi; = 1,15 = 2,i3 = 6,14 = 8,15 = 7,16 = 4,17 = 3,ig = 5. In order to transmit information
about corresponding suffixes, we simply arrange and endegta tn the same ordes;,, ..., s; . Any
standard source coding technique (such as Shannon, Huyfmnamithmetic codes) can be applied for
this sequence.

The decoder performs inverse operations:

1) Decode the DST tree structure;

2) Scan nodes in the same order as encoder, and retrieveegngfix . ., p;,.;

3) Sequentially decode corresponding suffixgs. . ., s;,,, and form complete decoded words; =

Di; Sijs j = 1,...,m.



0000,...->W8

Figure 3. Canonic order of nodes (produced by pre-orderttesersal, with count assigned to root), corresponding prefixes, and
words from our example set.

We conclude our presentation of the algorithm by showing mpiete code constructed for our
example set of words (see Table 1, and Figures 1-3).

Code({w1,...,wn}) = Binfg, 1(index),s;,...,s;,

= Bin(c’_g] (381)7 S1, 52, S6, S8, 87, S4, $3, S5
— 0000101111101,1011,111,01,0, 10, 010, 0001, 010.

As evident, the length of this code 18 + 22 = 35 bits, which is by40 — 35 = 5 bits shorter than
the length of a straightforward sequential encoding of wardthis set.

[1l. ANALYSIS OF PERFORMANCE

Let us now assume that input wordsvy,...,w,,} are produced by a general (not necessarily
symmetric) binary memoryless source, emitting “0’s ands*‘lith probabilitiesp andg = 1 — p
correspondingly.

Recall, that the entropy rate of memoryless source is giyeflp

h(p) = —plog,p — qlogy q, (5)
and so the ideahverage lengttof encoding of a sequenae,, ..., w,, becomes
L:cquoncc (mn?p) =mn h(p) [blts]7 (6)

wheren denotes the length of each word, amah is the length of the entire sequence.
If we now allow arbitrary reordering of the decoded wordshe set{w;, ..., w,,}, we may expect
the ideal average length of such code to become:
L*

set

(m,n,p) =mnh(p) —log,m! [bits]. (7)
As obvious, we must also require thiat, (m,n,p) > 0, and therefore we will expect word length
to be sufficiently large. In the asymptotic sense, withn — oo, this implies that:

n 1
logy m g h(p)




Given a specific algorithng producing codes with average lengths(m, n,p), we will define its
average redundancy rate for coding of sets follows:

1

R‘ﬁ(m7 n7p) = mn |:L§ (m7 nuP) - L:ct (m7 nupﬂ
1 1
et _ — _— |
p— L¢ (m,n,p) [h(p) — log, m.] : (8)

This definition is almost identical to one used in traditibsaurce coding [5], except that in our case,
the ideal rate is no longer the entropyp), but ratherh(p) — - log, m!.

Now, before we can introduce our main result, we need to makentore clarification. In our analysis,
we will assume, thatn, n — oo, and moreover, that

1
LS . 9)
logym = —log, max(p, q)
This condition says that with probability, the height (longest path) of DST constructed ower
randomly generated input words, . . ., w,, will be shorter tham, or equivalently, that length will be
sufficient to uniquely parse all input words by a DST struet(af. [13]). Since— log, max(p, q) < h(p),

condition (9) also ensures that rate limit (7) is positive.
The main result of analysis of our proposed coding schemé&vendelow.

Theorem 1. The average redundancy rate of DST-based encoding of a setlmhary words of length
n, in @ memoryless model satisfies (withn — oo, n/log, m > —log; ' max(p, q)):

Rost (m,n,p) = — | A(p) + 8(m) + O (logm)} (10)

n m

where A(p) is a constant, which exact value is given by:

v =2 ha(p)
o anp) oW

where:y = 0.577. .. is the Euler constanti(p) is the entropy of the source (5),

Alp) =2~ (12)

ha(p) = plogs p + qlogs q,

— p"llog, p + ¢F 1 log, g

1— pk+1 _ qk—i-l

a(p) = —

and j(m) is a zero-mean, oscillating function of a small magnitude.

Proof: We know that our code consists of 2 parts: 1) encoded treepgarg at mostlog, Cy, 1] <
log, C,nie1 + 1 bits, and 2) encoded sequence of suffixes. We will assumebtbek Shannon code [1]
is used to encode the suffixes. This produces code with th@niolg expected length:

Lsuff(Smap) g Sm h(p) + 1 )

whereS,, = mn — D, is the total length of all suffixes, andp) is the entropy of the source.
Since Lq.¢(Sm,p) is bounded by a linear function of,,, we can further expect that the average
length of code, considering all possible suffix lengths)

> Pr(Sm = $) Leut(s,p) < Smh(p) + 1,
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Figure 4. Behavior of redundancy factdi(p) as function of parameter of the sourge

where S,, = ES,,, is the expected length of suffixes in our set. In tusf), can be expressed as
S, =mn — P,, whereP,, = EP,, is the expected path length in the DST tree.
We next retrieve result for so-callealerage deptiof the DST [10]-[12]:

1 - 1 h -1 1
—Pm:m log, m + 2(p) +7 —a+51(m)—|—0(0gm>] ;

m 2h(p) In2 m

which introduces quantitie&(p), hao(p), v, a(p) anddy(n) appearing in the text of our theorem.
The rest becomes a matter of simple algebra. Expected cadéhléurns into
Lpst (m,n,p) < 1ogy Crus1 + Sim h(p) + 2
= mnh(p) +1ogy Crny1 — Pp h(p) + 2
v—1  hy(p)

= mnh(p) —mlogo,m+m |2 — 3 —2h(p)+oz(p)—5(m) + O(logm)

and by combining this with asymptotic expansion of

1
log, m! = mlogy,m — ma™m T O (logm)

we arrive at the redundancy term claimed by the theorem. [ ]

A. Discussion

As evident, the average redundancy rate of our proposedr&ciE0) decays at rat@ ( ) as word
lengthn increases. This is a good sign: it matches the order of beshable redundancy rate when
encoding a singlex-bit long sequence from a known source [5].

It is also encouraging that the redundancy rate is not grgpwirth the number of words in our set.
Recall, that if we would use simple sequential encodings thould causdog, m! overhead, and so
we would observe a Iogarlthmlc%;i—"“ logzm) increase of redundancy rate with. In our case, the
redundancy rate stays almost constant wit, ‘tdefined by the leading factot(p) and a small-magnitude

oscillating functiond(m). We provide plot of values of factad(p) in Figure 4.



Overall, this analysis shows that the proposed schemeedglslose to the predicted optimal perfor-
mance in the memoryless model (7), and that the differeredu(dancy rate) becomes progressively
small, as the length of words increases.

IV. APPLICATIONS, SIGNIFICANCE, AND CONCLUDING REMARKS

The representation of a text by an unordered collection ad&/is a common simplifying assump-
tion [27] used in many fields, including natural languagecpssing, retrieval, document classification,
machine learning, and computer vision. It is usually calted “bag of words” (BoW) or “bag of
features” (BoF) representation, and it serves as a basieelefor further processing. When such
processing is done remotely, for example by a search / Gilzggdin engine located in the cloud, bags
of words may need to be transmitted over the network to ieitsearch / classification processing. The
use of compression technique discussed in this paper may allore efficient transmission or storage
of such data.

Examples of existing practical applications that can imiaedy benefit from this work include
mobile visual searcland mobile augmented realityapplications [30], [31]. Such applications usually
initiate search by taking a picture of an object of interéisgn perform extraction of a set of visual
words, for example SIFT, SURF, or CHoG images features [38}-and then use this set for retrieval.
Typically, each query image becomes represented by appadaly m ~ 1000 features, therefore,
aboutlog, m! ~ 8.3K bits per each query request can be saved. With compact ifeaferes, such as
CHoG [34], [35] this could lead to practically appreciabteprovements in performance.

In general, the larger is the number of words in the BoF regmedion, the more significant is
the effect of using specialized encoding for unordered. SEte asymptotic relationship between the

expected rate reduction factor= #’E&m, and the size of the set boils down to:

m ~ 2" e
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