
Coding of Sets of Words

Yuriy A. Reznik
Qualcomm Inc., San Diego, CA

Email: yreznik@ieee.org

Abstract

We study the problem of coding of unordered sets of words, appearing in natural language processing,
retrieval, machine learning, computer vision, and other fields. We note that this problem is different from the
problem of coding of a particular sequence of same words, andshow that up tolog

2
m! bits (wherem is the

number of words in the set) can be saved by specialized codes for sets. We propose one possible design of such
codes, and prove its asymptotic optimality in the memoryless model.

I. INTRODUCTION

The classic problem of source coding is to encode a givensequence of words(or a message) w =
w1, w2, . . ., with the goal of minimizing the number of bits needed for such encoding. Most commonly,
it is further assumed that words must be decoded in the same order as they appear, and that the result
of decoding must be unique and matching the original. This setting, coupled with the assumption
about stochastic nature of the source, has lead to many fundamental results and techniques, including
Shannon’s source coding theorem, Huffman codes, and others[1].

Nevertheless, in practice, we may also encounter a slightlydifferent problem: the message may be
given by aset of words{w1, . . . , wm}, where theirorder is not important. This happens, for example,
when we formulate a request to a search engine by providing a list of keywords. Such keywords can be
communicated in any order, without affecting the meaning ofthe message. Given this flexibility, one
may expect a code constructed for a set{w1, . . . , wm} to consume aboutlog2m! less bits than a code
constructed for a particular sequencewi1, . . . , wim. However, the construction of codes for unordered sets
does not appear to be entirely trivial: most existing sourcecoding tools assume sequential processing.
Here we need something else.

The purpose of this paper is to offer one possible practical solution for this coding problem. The key
tool that we employ comes from information retrieval: it is adigital search treeor DSTstructure, due
to E. Coffman and J. Eve [9] (cf. [3], [10]). It is similar, in asense, to theprefix treeor incremental
parsing rule of J. Ziv and A. Lempel’sLZ 78 algorithm [19]. However, prefix tree always parses a
single sequence, while DST is designed to parse a set of sequences. DST is also different from parsing
trees used by Tunstall codes [20], [22], CTW [23], and other conventional source coding algorithms.
Once the DST is constructed, we useZacks rankingscheme [24] to compute its lexicographic index,
and then we transmit it. Finally, to encode parts of input words that were not “absorbed” by the tree
structure, we define a canonic order of nodes in the tree, and transmit missing parts of words according
to this order. We provide detailed analysis of the average performance of this scheme in the memoryless
model, and show that it asymptotically approaches the expected log2m! reduction in the bitrate.

Among related prior studies, we must mention 1986 work of A. Lempel [6], who defined a class
of multiset decipherable codes, and shown that such codes should be more compact than conventional
(uniquely decipherable) codes whenm > 3. Another related class of codes (for words over partially
commutative alphabet) was studied by S. Savari [7]. The achievable performance bounds for coding
of sets were studied by L. Varshney and V. Goyal [8]. The rate reduction limit of log2m! bits in

Table I
EXAMPLE SET OF BINARY WORDS{w1, . . . , wm}.

Index Word DST path Suffix
i wi pi si
1 01011 0 1011
2 00111 00 111
3 10001 1 0001
4 01010 01 010
5 10010 10 010
6 00001 000 01
7 00110 001 10
8 00000 0000 0

Bits: 8× 5 = 40 18 22

lossless regime was also obtained in [8], but without offering any constructive process for reaching it.
Properties of DST and related structures were studied in [3], [10]–[16]. Techniques for coding of trees
were discussed in [24]–[26]. Descriptions of other known uses of coding of trees in data compression
can be found in [28], [29], [34].

This paper is organized as follows. In Section II we provide detailed description of our algorithm.
In Section III, we study asymptotic performance of this scheme in the memoryless model. Section IV
contains discussion on practical relevance of this work, its applications, and conclusions.

II. CODING OF SETS OFWORDS

Let {w1, . . . , wm} be a set of words that we need to encode. For simplicity of presentation, we will
assume that these words are binary, distinct, have the same length|wi| = n, and produced by asymmetric
memoryless source. That is, characters “0” and “1” appear with same probability p = 1 − p = 1/2
regardless of their positions or order. The entropy rate of such source is1 bit/character [1], implying,
that conventional sequential encoding of wordsw1, . . . , wm will cost at leastmn bits.

Hereafter, we will often refer to an example set of words shown Table I (second column). In this
case:m = 8, n = 5, and total lengthmn = 8× 5 = 40 bits.

A. Tree-based representation

In order to construct a more compact representation of the set {w1, . . . , wm}, we employ a data
structure, known asdigital search treeor DST [3], [9], [10]. We start with a single root node, and
assume that it corresponds to an empty word. We then pick our first wordw1, and depending on the
value of its first character, we add left or right branch to theroot node, and insert a new node there. We
also store pointer tow1 in that node. With second and subsequent words, we traverse the tree starting
from the root node, by following characters in a current word, and once we hit the leaf (a node with no
continuation in the direction of interest), we extend it by creating a new node and storing pointer to the
current word in it. This process is repeatedm times, so that all words from our input set{w1, . . . , wm}
are inserted.

The DST structure constructed over our example set is shown in Figure 1. The paths from root to
other nodes in the tree correspond to portions (prefixes) of words inserted in this structure. We list such
prefixes in the third column in Table I. The forth column in Table I lists the remainders (suffixes) of each
word. In other words, we observe that DST construction effectively “splits” wordswi (i = 1, . . . , m) in
two parts:

wi = pi si,

W2 = 00,111

W8=0000,0

W3=1,0001

W5=10,010W4=01,010

W6=000,01 W7=001,10

W1=0,1011

0 1

0 1 0

0 1

0

Figure 1. Digital search tree (DST) structure constructed over our example set of words. We use commas to separate prefix (matching
path from the root) and suffix parts of words.

0

1

2

3

4

5

6

7

8

1

1

1

1

1

1 1

1

0

00

00

00 00

0

1

Figure 2. Encoding of a binary tree. The numbers in nodes showorder in which they are visited during pre-order tree traversal [4]. Present
and missing nodes are labeled with1’s and0’s correspondingly. Scan of these labels produces a sequence: x = 1111100010010011000.

wherepi are prefixes covered by paths in the tree, andsi are the remaining suffixes. Overall lengths of
prefixes and the suffixes will be denoted by

Pm =

m
∑

i=1

|pi|, and Sm =

m
∑

i=1

|si| = mn− Pm (1)

correspondingly. In our example, shown in Figure 1, the overall DST path length isPm = 18, and the
length of the remaining suffixes isSm = 40− 18 = 22.

B. Encoding of a tree

Our next task is to encode the structure of the DST efficiently. More specifically, we need to encode
the shape of its binary tree. This tree containsi = m+ 1 nodes (m nodes associated with input words
+ root).

We start by scanning the tree recursively, by using pre-order tree traversal [4], and assigning labels
“1” to the existing nodes, and ”0” to missing ones (see Figure2). We call the resulting sequence of

Table II
COEFFICIENTSai,j USED IN LEXICOGRAPHIC ENUMERATION OF TREES.

H
H
H
HH

i

j
0 1 2 3 4 5 6 7 8

1 1
2 2 1
3 5 3 1
4 14 9 4 1
5 42 28 14 5 1
6 132 90 48 20 6 1
7 429 297 165 75 27 7 1
8 1430 1001 572 275 110 35 8 1
9 4862 3432 2002 1001 429 154 44 9 1

labels anx-sequence. It is known, that this sequence contains2i+ 1 digits, and that it can serve as a
unique representation of a tree withi nodes [2], [24]. Indeed,x-sequence may also serve as a code, but
as we shall show, more compact representation is possible.

In general, it is known, that the total number of possible rooted binary trees withi nodes is given by
the Catalan number [2, Section 2.3.4.4]:

Ci =
1

i+ 1

(

2i

i

)

, (2)

implying, that a tree can be uniquely represented by only

⌈log2Ci⌉ ∼ 2 i− 3
2
log2 i+O (1) [bits]. (3)

We next briefly describe one possible coding technique [24] that achieves this rate.
Given anx-sequence for a tree, we produce a list of positions of symbols “1” in it. We will call it

a z-sequencez = z1, . . . , zi. For example, for a sequencex = 1111100010010011000, corresponding
to a tree in Figure 2, we produce:z = 1, 2, 3, 4, 5, 9, 12, 15, 16. We next define a rule for incremental
reduction ofz-sequences. Letj∗ be the largestj, such thatzj = j. By z∗ = z∗1 , . . . , z

∗
i−1 we will denote

a new sequence that omits valuezj∗, and subtracts2 from all subsequent values in the original sequence:

z∗j =

{

zj, j = 1, . . . , j∗ − 1;
zj+1 − 2, j > j∗.

Then, a lexicographic index (orZaks rank) of a tree is recursively computed as follows [24]:

index(z) =

{

1, if j∗ = i;
ai,j∗ + index(z∗), if j∗ < i,

(4)

where

ai,j =
j + 2

2i− j

(

2i− j

i− j − 1

)

, 0 6 j 6 i− 1

are some constants (see Table II).

For example, for a tree in Figure 2, Zaks ranking algorithm (4) produces:

index(1, 2, 3, 4, 5, 9, 12, 15, 16) = a9,5 + index(1, 2, 3, 4, 7, 10, 13, 14);

index(1, 2, 3, 4, 7, 10, 13, 14) = a8,4 + index(1, 2, 3, 5, 8, 11, 12);

index(1, 2, 3, 5, 8, 11, 12) = a7,3 + index(1, 2, 3, 6, 9, 10);

index(1, 2, 3, 6, 9, 10) = a6,3 + index(1, 2, 4, 7, 8);

index(1, 2, 4, 7, 8) = a5,2 + index(1, 2, 5, 6)

index(1, 2, 5, 6) = a4,2 + index(1, 3, 4)

index(1, 3, 4) = a3,1 + index(1, 2)

index(1, 2) = 1;

resulting in

index(1, 2, 3, 4, 5, 9, 12, 15, 16) = a9,5 + a8,4 + a7,3 + a6,3 + a5,2 + a4,2 + a3,1 + 1

= 154 + 110 + 75 + 20 + 14 + 4 + 3 + 1

= 381.

The code of this tree is a⌈log2Cm+1⌉ = ⌈log2C9⌉ = 13 bits-long binary record of its index:

Bin⌈log2 Cm+1⌉(index) = Bin13(381) = 0000101111101.

As easily observed, this code is shorter that2(m+1)+1 = 19 bits used by ourx-sequence, and notably,
it is also shorter thanPm = 18 bits of prefix data stored in this tree.

We are now ready to describe the remaining steps in our codingscheme for sets of words.

C. Coding of sets of words

Given a set ofm words{w1, . . . , wm}, the proposed algorithm performs the following operations:
1) Build, encode, and transmit DST structure over the input set {w1, . . . , wm};
2) Scan the tree recursively, and define a canonic order of nodes and the corresponding prefixes

pi1 , . . . , pim in the DST;
3) Encode and transmit suffixes according to same ordersi1, . . . , sim .
The construction of the DST structure and its encoding is performed as discussed in previous sections.

To define a canonic order of nodes we use the standard pre-order tree traversal [4], and assign each
node a serial number, starting with0, assigned to the root node (see Figure 3). As we reach aj-th node
during the traversal, we can also recover prefix of a wordwij that was inserted in it. This produces an
orderi1, . . . , im in which prefixes of all words from our set can be retrieved from the tree. We omit the
root node (and empty word that it contains) in this sequence.For example, for a tree in Figure 3, this
producesi1 = 1, i2 = 2, i3 = 6, i4 = 8, i5 = 7, i6 = 4, i7 = 3, i8 = 5. In order to transmit information
about corresponding suffixes, we simply arrange and encode them in the same order:si1 , . . . , sim. Any
standard source coding technique (such as Shannon, Huffman, or arithmetic codes) can be applied for
this sequence.

The decoder performs inverse operations:
1) Decode the DST tree structure;
2) Scan nodes in the same order as encoder, and retrieve prefixespi1, . . . , pim ;
3) Sequentially decode corresponding suffixessi1, . . . , sim , and form complete decoded words:wij =

pij sij , j = 1, . . . , m.

00,...->W2

0000,...->W8

1,...->W3

10,...->W501,...->W4

000,...->W6 001,...->W7

0,...->W1

0

1

2

3

4

5

6

7

8

Figure 3. Canonic order of nodes (produced by pre-order tree-traversal, with count0 assigned to root), corresponding prefixes, and
words from our example set.

We conclude our presentation of the algorithm by showing a complete code constructed for our
example set of words (see Table 1, and Figures 1–3).

Code({w1, . . . , wm}) = Bin⌈Cm+1⌉(index), si1, . . . , sim
= Bin⌈C9⌉(381), s1, s2, s6, s8, s7, s4, s3, s5

= 0000101111101, 1011, 111, 01, 0, 10, 010, 0001, 010.

As evident, the length of this code is13 + 22 = 35 bits, which is by40 − 35 = 5 bits shorter than
the length of a straightforward sequential encoding of words in this set.

III. A NALYSIS OF PERFORMANCE

Let us now assume that input words{w1, . . . , wm} are produced by a general (not necessarily
symmetric) binary memoryless source, emitting “0”s and “1”s with probabilitiesp and q = 1 − p
correspondingly.

Recall, that the entropy rate of memoryless source is given by [1]

h(p) = −p log2 p− q log2 q, (5)

and so the idealaverage lengthof encoding of a sequencew1, . . . , wm becomes

L∗
sequence(mn, p) = mnh(p) [bits], (6)

wheren denotes the length of each word, andmn is the length of the entire sequence.
If we now allow arbitrary reordering of the decoded words in the set{w1, . . . , wm}, we may expect

the ideal average length of such code to become:

L∗
set (m,n, p) = mnh(p)− log2m! [bits]. (7)

As obvious, we must also require thatL∗
set (m,n, p) > 0, and therefore we will expect word lengthn

to be sufficiently large. In the asymptotic sense, withm,n → ∞, this implies that:

n

log2m
>

1

h(p)
.

Given a specific algorithmξ producing codes with average lengthsLξ (m,n, p), we will define its
average redundancy rate for coding of setsas follows:

Rξ(m,n, p) =
1

mn

[

L ξ (m,n, p)− L∗
set (m,n, p)

]

=
1

mn
L ξ (m,n, p)−

[

h(p)−
1

mn
log2m!

]

. (8)

This definition is almost identical to one used in traditional source coding [5], except that in our case,
the ideal rate is no longer the entropyh(p), but ratherh(p)− 1

mn
log2 m!.

Now, before we can introduce our main result, we need to make one more clarification. In our analysis,
we will assume, thatm,n → ∞, and moreover, that

n

log2m
>

1

− log2max(p, q)
. (9)

This condition says that with probability1, the height (longest path) of DST constructed overm
randomly generated input wordsw1, . . . , wm will be shorter thann, or equivalently, that lengthn will be
sufficient to uniquely parse all input words by a DST structure (cf. [13]). Since− log2max(p, q) 6 h(p),
condition (9) also ensures that rate limit (7) is positive.

The main result of analysis of our proposed coding scheme is given below.

Theorem 1. The average redundancy rate of DST-based encoding of a set ofm binary words of length
n, in a memoryless model satisfies (withm,n → ∞, n/ log2m > − log−1

2 max(p, q)):

RDST (m,n, p) =
1

n

[

A(p) + δ(m) +O

(

logm

m

)]

(10)

whereA(p) is a constant, which exact value is given by:

A(p) = 2−
γ − 2

ln 2
−

h2(p)

2 h(p)
+ α(p) (11)

where:γ = 0.577 . . . is the Euler constant,h(p) is the entropy of the source (5),

h2(p) = p log22 p+ q log22 q,

α(p) = −
∞
∑

k=1

pk+1 log2 p+ qk+1 log2 q

1− pk+1 − qk+1
.

and δ(m) is a zero-mean, oscillating function of a small magnitude.

Proof: We know that our code consists of 2 parts: 1) encoded tree, occupying at most⌈log2Cm+1⌉ 6
log2Cm+1 + 1 bits, and 2) encoded sequence of suffixes. We will assume thatblock Shannon code [1]
is used to encode the suffixes. This produces code with the following expected length:

Lsuff(Sm, p) 6 Sm h(p) + 1 ,

whereSm = mn−Dn is the total length of all suffixes, andh(p) is the entropy of the source.
SinceLsuff(Sm, p) is bounded by a linear function ofSm, we can further expect that the average

length of code, considering all possible suffix lengths, will be
∑

s

Pr(Sm = s) Lsuff(s, p) 6 S̄m h(p) + 1 ,

Figure 4. Behavior of redundancy factorA(p) as function of parameter of the sourcep.

where S̄m = ESm, is the expected length of suffixes in our set. In turn,S̄m can be expressed as
S̄m = mn− P̄n, whereP̄m = EPm is the expected path length in the DST tree.

We next retrieve result for so-calledaverage depthof the DST [10]–[12]:

1

m
P̄m =

1

h(p)

[

log2m+
h2(p)

2 h(p)
+

γ − 1

ln 2
− α + δ1(m) +O

(

logm

m

)]

,

which introduces quantitiesh(p), h2(p), γ, α(p) andδ0(n) appearing in the text of our theorem.
The rest becomes a matter of simple algebra. Expected code length turns into

LDST (m,n, p) 6 log2Cm+1 + S̄m h(p) + 2

= mnh(p) + log2Cm+1 − P̄m h(p) + 2

= . . .

= mnh(p)−m log2m+m

[

2−
γ − 1

ln 2
−

h2(p)

2 h(p)
+ α(p)− δ(m)

]

+O(logm)

and by combining this with asymptotic expansion of

log2m! = m log2m−
1

ln 2
m+O (logm)

we arrive at the redundancy term claimed by the theorem.

A. Discussion

As evident, the average redundancy rate of our proposed scheme (10) decays at rateO
(

1
n

)

as word
lengthn increases. This is a good sign: it matches the order of best attainable redundancy rate when
encoding a singlen-bit long sequence from a known source [5].

It is also encouraging that the redundancy rate is not growing with the number of words in our setm.
Recall, that if we would use simple sequential encoding, this would causelog2m! overhead, and so
we would observe a logarithmic (log2 m!

mn
∼ log2 m

n
) increase of redundancy rate withm. In our case, the

redundancy rate stays almost constant w.r.t.m, defined by the leading factorA(p) and a small-magnitude
oscillating functionδ(m). We provide plot of values of factorA(p) in Figure 4.

Overall, this analysis shows that the proposed scheme delivers close to the predicted optimal perfor-
mance in the memoryless model (7), and that the difference (redundancy rate) becomes progressively
small, as the length of wordsn increases.

IV. A PPLICATIONS, SIGNIFICANCE, AND CONCLUDING REMARKS

The representation of a text by an unordered collection of words is a common simplifying assump-
tion [27] used in many fields, including natural language processing, retrieval, document classification,
machine learning, and computer vision. It is usually calledthe “bag of words” (BoW) or “bag of
features” (BoF) representation, and it serves as a basic element for further processing. When such
processing is done remotely, for example by a search / classification engine located in the cloud, bags
of words may need to be transmitted over the network to initiate search / classification processing. The
use of compression technique discussed in this paper may allow more efficient transmission or storage
of such data.

Examples of existing practical applications that can immediately benefit from this work include
mobile visual searchand mobile augmented realityapplications [30], [31]. Such applications usually
initiate search by taking a picture of an object of interest,then perform extraction of a set of visual
words, for example SIFT, SURF, or CHoG images features [32]–[35], and then use this set for retrieval.
Typically, each query image becomes represented by approximately m ∼ 1000 features, therefore,
aboutlog2m! ∼ 8.3K bits per each query request can be saved. With compact imagefeatures, such as
CHoG [34], [35] this could lead to practically appreciable improvements in performance.

In general, the larger is the number of words in the BoF representation, the more significant is
the effect of using specialized encoding for unordered sets. The asymptotic relationship between the
expected rate reduction factorξ = log2 m!

mnh(p)−log2 m!
and the size of the setm boils down to:

m ∼ 2nh(p)
ξ

1+ξ .

REFERENCES

[1] T. M. Cover and J. M. Thomas,Elements of Information Theory, John Wiley & Sons, New York, 1991.
[2] D. Knuth, The Art of Computer Programming. Fundamental Algorithms. Vol. 1, Addison-Wesley, Reading MA, 1968.
[3] D. Knuth, The Art of Computer Programming. Sorting and Searching. Vol. 3, Addison-Wesley, Reading MA, 1973.
[4] R. Sedgewick,Algorithms. Parts 1-4. Fundamentals, Data Structures, Sorting, Searching, Addison-Wesley, Reading MA,

1998.
[5] R. E. Krichevsky,Universal Data Compression and Retrieval, Kluwer, Norwell, MA, 1993.
[6] A. Lempel, On multiset decipherable codes,IEEE Trans. Inf. Theoryvol. 32, no. 5, pp. 714–716, 1986.
[7] S. A. Savari, Compression of words over a partially commutative alphabet,IEEE Trans. Inf. Theory, vol. 50, no. 7, pp.

1425–1441, 2004.
[8] L. R. Varshney and V. K. Goyal, Toward a Source Coding Theory for Sets,Proc. Data Compression Conference,

Snowbird, Utah, Mar. 2006, pp. 13-22.
[9] E. G. Coffman, Jr. and J. Eve, File structures using hashing functions,Communications of the ACM, vol. 13, no. 7, pp.

427–436, 1970.
[10] P. Flajolet and R. Sedgewick, Digital Search Trees Revisited,SIAM J. Computing, vol. 15, pp. 748–767, 1986.
[11] P. Kirschenhofer and H. Prodinger, Some further results on digital search trees,Lecture Notes in Computer Science,

vol. 229, pp. 177–185, Springer-Verlag, New York, 1986.
[12] W. Szpankowski, A characterization of digital search trees from the successful search viepoint,Theoretical Computer

Science, vol. 85, pp. 117–134, 1991.
[13] B. Pittel, Asymptotic growth of a class of random trees,Annals of Probability, vol. 18, pp. 414-427, 1985.
[14] A. Andersson and S. Nilsson, Improved Behaviour of Tries by Adaptive Branching,Information Processing Letters,

vol. 46, pp. 295–300, 1993.

[15] Y. A. Reznik, Some Results on Tries with Adaptive Branching, Theoretical Computer Science, vol. 289, no. 2, pp.
1009–1026, 2002.

[16] Y. A. Reznik, ”On the Average Depth of Asymmetric LC-tries,” Information Processing Letters, vol. 96, no. 3, pp.
106–113, 2005.

[17] G. Louchard and W. Szpankowski, On the Average Redundancy Rate of the Lempel-Ziv Code,IEEE Trans. Information
Theory, vol. 43, pp. 2–8, 1997.

[18] Y. A. Reznik and W. Szpankowski, On the Average Redundancy Rate of the Lempel- Ziv Code with the K-Error
Protocol,Information Sciences, vol. 135, pp.57–70, 2001.

[19] J. Ziv and A. Lempel, Compression of Individual Sequences via Variable-Rate Coding,IEEE Trans. Information Theory,
vol. 24, pp. 550–536, 1978.

[20] B. P. Tunstall,Synthesis of Noiseless Compression Codes, Ph.D. dissertation, Georgia Inst. Tech., Atlanta, GA, 1967.
[21] G. L. Khodak, Redundancy Estimates for Word-Based Encoding of Messages Produced by Bernoulli Sources,Probl.

Inform. Trans., vol. 8, no. 2, pp. 21–32, 1972. (in Russian)
[22] M. Drmota, Y. A. Reznik, S. A. Savari, and W. Szpankowski, Precise Asymptotic Analysis of the Tunstall Code,Proc.

IEEE Intl. Symp. Inf. Theory (ISIT06), Seattle, USA, 2006, pp. 2334 – 2337.
[23] F. Williams, Y. Shtarkov, T. Tjalkens, The Context-Tree Weighting Method: Basic Properties,IEEE Trans. Inform.

Theory, vol. 41, n. 3, pp. 653–664, 1995.
[24] S. Zaks, Lexicographic Generation of Ordered Trees,Theoretical Computer Science, vol. 10, 1980, pp. 63–82.
[25] J. Katajanen and E. Makinen, Tree compression and optimization with applications,International Journal of

Foundations of Computer Science, vol. 1, no. 4, 1990, pp. 425–447.
[26] E. Makinen, A survey of binary tree codings,The Computer Journal, vol. 34, no. 5, 1991, pp. 438–443.
[27] D. Lewis, Naive (Bayes) at Forty: The Independence Assumtion in Information Retrieval,Proc. 10th European

Conference on Machine Learning (ECML-98), 1998, pp. 4-15.
[28] T. Gagie, Compressing Probability Distributions,Information Processing Letters, vol. 97, no. 4, pp. 133–137, 2006.
[29] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, J. Singh,and B. Girod, Tree histogram coding for mobile image

matching,in Proc. IEEE Data Compression Conference, Snowbird, Utah, March 2009, pp. 143-153.
[30] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and

B. Girod, Outdoors Augmented Reality on Mobile Phone using Loxel-Based Visual Feature Organization,Proc. ACM
International Conference on Multimedia Information Retrieval (MIR), 2008.

[31] B. Girod, V. Chandrasekhar, D. Chen, N-M. Cheung, R. Grzeszczuk, Y. Reznik, G. Takacs, S. Tsai, and R. Vedantham,
Mobile Visual Search,IEEE Signal Processing Magazine- to appear.

[32] D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints,International Journal of Computer Vision, vol.
60, no. 2, pp. 91-110, 2004.

[33] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: SpeededUp Robust Features,Computer Vision and Image
Understanding, vol. 110, no. 3, pp. 346359, 2008.

[34] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, B. Girod, CHoG: Compressed Histogram of Gradients
– A low bit-rate feature descriptor,Proc. Computer Vision and Pattern Recognition (CVPR09), pp. 2504-2511, 2009.

[35] V. Chandrasekhar, Y. Reznik, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and B. Girod, Quantization Schemes for
Low Bitrate Compressed Histogram of Gradient Descriptors,Proc. Computer Vision and Pattern Recognition (CVPR10),
2010.

