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Abstract

This paper describes design of a low-complexity algorithm for adaptive en-
coding/decoding of binary sequences produced by memoryless sources. The
algorithm implements universal block codes constructed for a set of contexts
identified by the numbers of non-zero bits in previously observed bits in a se-
quence. We derive a precise formula for asymptotic redundancy of such codes,
which refines previous well-known estimate by Krichevsky and Trofimov [24],
and provide experimental verification of this result. In our experimental study
we also compare our implementation with existing binary adaptive encoders,
such as JBIG’s Q-coder [41], and MPEG AVC (ITU-T H.264)’s CABAC [43]
algorithms.

1 Introduction

One of the most basic tasks in the design of today’s data compression algorithms
is the one of converting input sequences of bits with some unknown distribution
into a decodable bitstream. This happens, for example, in the design of image or
video codecs, scalable (bit-slice based) encoding of spectrum in audio codecs, etc. In
most such cases, the bits to be encoded are taken from values produced by various
signal processing tools (transforms, prediction filters, etc), which means that they
are already well de-correlated, and that assumption of memorylessness of such a
source is justified.

Most commonly, the problem of encoding of such sequences of bits is solved by
using fast (typically multiplication-free) approximations of binary adaptive arith-
metic codes. Two well known examples of such algorithms are IBM’s Q-coder [41]
adopted in JBIG image coding standard [42], and CABAC encoder [43] used in
MPEG AVC/ITU-T H.264 standards for video compession [44].

In this paper we describe an alternative implementation of adaptive encoder
using an array of Huffman codes designed for several estimated densities, indexed
by the numbers of non-zero bits in previous blocks (contexts) in a sequence.

We study both efficiency and implementation aspects of such a scheme and show
that by using even relatively short blocks (8...16 bits) it can achieve compression
performance comparable or superior to one of the above quoted algorithms.

This paper is organized as follows. In Section 2 we provide background informa-
tion about our coding problem. In Section 3 we quote known results about efficiency
of such codes and offer a more precise result. In Sections 4 and 5 we describe de-
sign of our system, and in Section 6 we provide experimental results. Appendix A
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contains proofs of out Theorem 1, and Appendix B contains complete code of the
program we’ve designed.

2 Background Information

Consider a memoryless source producing symbols from a binary alphabet {0, 1} with
probabilities p, and q = 1− p correspondingly. If w is a word of length n produced
by this source, then its probability:

Pr (w) = pk qn−k , (1)

where k denotes the number of 1’s in this word (sometimes k is also referred to as
weight of w).

A block code ϕ is an injective mapping between words w of length |w| = n and
binary sequences (or codewords) ϕ (w):

ϕ : {0, 1}n → {0, 1}∗ , (2)

where the codewords ϕ (w) represent a uniquely decodable set [7].
Typically, when the source (i.e. its probability p) is known, such a code is de-

signed to minimize its average length, or (in relative terms) its average redundancy :

Rϕ (n, p) =
1

n

∑
|w|=n

Pr(w) |ϕ(w)| −H(p) . (3)

As customary by H(p) = −p log p− q log q we denote the entropy of the source [7].
Classical examples of codes and algorithms suggested for solving this problem

include Huffman [18], Shannon [34], Shannon-Fano [12], Gilbert-Moore [17] codes
and their variants [1]. Performance of such codes is well studied, see, e.g. [16], [25],
[35], [36], [30]. Analysis of their complexity can be found in [38], [39]. Many useful
practical implementation techniques for such codes have also been reported, see,
e.g. [1], [27],[4].

When the source is not known, the best option available is to design a universal
code ϕ∗ that minimize the worst case redundancy for a class of sources [13, 8, 25]:

Rϕ∗ (n) = inf
ϕ

sup
p

Rϕ (n, p) .

An example of such a code can be constructed using the following estimates of words’
probabilities1:

PKT (w) =
Γ (k + 1/2) Γ (n− k + 1/2)

πΓ (n+ 1)
, (4)

where Γ(x) is a Γ-function, k is the weight of word w, and n is its length.
Finally, we might be in a situation when exact value of parameter of the source

is not known, but we can access a sequence of symbols u produced by this source in
the past. We will call such a sequence a sample, and will assume that it is |u| = t

1This formula is due to Krichevsky and Trofimov [24], and it assures uniform (in p) convergence
to true probabilities with n → ∞. See [26] and [40] for discussions on its background and optimality.
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bits long. The task here is to design a set of codes (indexed by different values of
this sample) ϕ∗

u, such that their resulting worst case average redundancy is minimal:

Rϕ∗
u
(n, t) = inf

{ϕu}
sup
p

∑
|u|=t

Pr(u)Rϕu (n, p) . (5)

Such codes are called sample-based or adaptive universal block codes [22, 23, 24].
In this paper we will study a particular implementation of adaptive block codes

utilizing the following estimates of probabilities of words w given a sample u:

PKT (w|u) = PKT (uw)

PKT (u)
=

Γ (k + s+ 1/2) Γ (n+ t− k − s+ 1/2)

Γ (s+ 1/2) Γ (t− s+ 1/2)

Γ (t+ 1)

Γ (n+ 1)
, (6)

where s is the weight of a sample u, and t is its length.

3 Performance of Adaptive Block Codes

The idea and original analysis of sample-based codes utilizing estimator (6) belong
to R. E. Krichevsky [23]. In particular, he has shown (cf. [24, Theorem 1], [25,
Theorem 3.4.1]), that the average redundancy rate of an adaptive block code is
asymptotically

Rϕ∗
u
(n, t) ∼ 1

2n
log

n+ t

t
, (7)

where n is a block size, and t is the size of samples.
From (7) it follows that by using samples of length t = O(n) it is possible to lower

redundancy rate of such codes to O
(
1
n

)
, which matches the order of redundancy rate

of block codes for known sources [7, 25, 36].
More precise analysis of adaptive block codes was recently performed by Reznik

and Szpankowski [29], leading to the following result.

Theorem 1 (Reznik & Szpankowsky 2003) The average redundancy rate of an
adaptive block code ϕ∗

u has the following asymptotic behavior (n, t → ∞):

Rϕ∗
u
(n, t, p) =

∑
|u|=t

Pr(u)Rϕ∗
u
(n, p)

=
1

n

{
1

2
log

t+ n

t
+∆ϕ∗

u
(n, t, p) +

1− 4 p q

24 pq

n

t (t+ n)
− 1− 3 pq

24 p2q2
(n+ 2 t)n

t2 (t+ n)2

+O

(
1

t3
+

1

n3

)}
, (8)

where n is a block size, and t is a sample size, p, q = 1−p are probabilities of symbols
of the input source, and where

∆ϕ∗
u
(n, t, p) =

∑
|u|=t

∑
|w|=n

Pr(u) Pr(w) [|ϕ∗
u(w)|+ logPKT (w|u)] (9)

is the average redundancy of code ϕ∗
u with respect to estimated distribution (6).
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Figure 1: Behavior of a factor 1−4 p q
24 pq in redundancy expression (8).

The exact behavior of ∆ϕ∗
u
(n, t, p) is algorithm-specific, but for most conven-

tional coding techniques, including Huffman and Shannon codes, this term can be
bounded as follows:

|∆(n, t, S)| 6 1 .

We also notice, that the redundancy of such codes also becomes affected by the
following term:

1− 4 p q

24 pq

n

t (t+ n)

which is a function of the parameter of the source p. We plot leading factor of this
term in Figure 1, and conclude that for short blocks/samples performance of such
codes becomes sensitive to the asymmetry of the source.

Proof of Theorem 1 can be found in Appendix A.

4 Efficient Implementation of Block Codes

We first notice, that in a memoryless model the probability of a word w (or its
estimate, cf. (1), (4), (6)) depends only on its weight k, but not an actual pattern
of its bits. Hence, considering a set of all possible n-bit words, we can split it in
n+ 1 groups:

{0, 1}n = Wn,0 ∪Wn,1 ∪ . . . ∪Wn,k ∪ . . . ∪Wn,n, (10)

containing words of the same weight (k = 0, . . . , n), and the same probability. As
obvious, the sizes of such groups are |Wn,k| =

(
n
k

)
. For further convenience, we will

assume that each group Wn,k stores words in a lexicographic order. By In,k(w) we
will denote the index (position) of a word w in a group Wn,k.

To describe the structure of our proposed mapping between words in groupsWn,k

and their codewords, we will use an example code shown in Table 1. This code was
constructed using a modification of Huffman’s algorithm [18], in which additional
steps were taken to ensure that codewords located at the same level have same
lexicographic order as input blocks that they represent. It is well-known that such
a reordering is possible without loss of compression efficiency. Examples of prior
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Table 1: Example of a code constructed for 4-bit blocks with Bernoulli probabilities:
pkqn−k, p = 0.9.

Block w k In,k(w) Pr(w) Length Code ϕ(w) Sub-group
0000 0 0 0.6561 1 1 0
0001 1 0 0.0729 3 001 1
0010 1 1 0.0729 3 010 1
0011 2 0 0.0081 6 000011 3
0100 1 2 0.0729 3 011 1
0101 2 1 0.0081 7 0000001 4
0110 2 2 0.0081 7 0000010 4
0111 3 0 0.0009 9 000000001 5
1000 1 3 0.0729 4 0001 2
1001 2 3 0.0081 7 0000011 4
1010 2 4 0.0081 7 0000100 4
1011 3 1 0.0009 9 000000010 5
1100 2 5 0.0081 7 0000101 4
1101 3 2 0.0009 9 000000011 5
1110 3 3 0.0009 10 0000000001 6
1111 4 0 0.0001 10 0000000000 7

algorithms using reordering to simplify designs include “Huffman-Shannon-Fano”
codes [5], “canonic Huffman codes” of Moffat and Turpin [27], [4], etc.

In Figure 2 we depict the structure of this code. As expected, each group Wn,k

consists of at most two sub-groups containing codewords of the same length: 2

Wn,k = Wn,k,ℓ ∪Wn,k,ℓ+1 , (11)

where ℓ is the shortest code length that can be assigned to blocks from Wn,k. More-
over, since words within Wn,k group follow lexicographic order, then the split be-
tween Wn,k,ℓ and Wn,k,ℓ+1 is simply:

Wn,k,ℓ = {w ∈ Wn,k : In,k(w) < nk} , (12)

Wn,k,ℓ+1 = {w ∈ Wn,k : In,k(w) > nk} , (13)

where nk denotes the size of a subgroup with shorter codewords.
We will call lexicographically smallest codewords in each subgroup base code-

words:

Bn,k,ℓ = ϕ(w0) , (14)

Bn,k,ℓ+1 = ϕ(wnk
) , (15)

where wi : is i-th block in Wn,k, and note that the remaining codewords in both
subgroups can be computed as follows:

ϕ(wi) =

[
Bn,k,ℓ + i, if i < nk ,
Bn,k,ℓ+1 + i− nk, if i > nk .

(16)

2This follows from the fact that all words in Wn,k have the same probability, and so-called sibling
property of Huffman codes (cf. [16], [35], [36]). This observation also holds true for Generalized
Shannon codes [10] and possibly some other algorithms.
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Figure 2: Structure of an example block code.

We point out that such base codewords are only defined for non-empty sub-
groups, and that the number of such subgroups S in a tree constructed for n-bit
blocks is within:

n+ 1 6 S 6 2n . (17)

We also notice that multiple subgroups can reside on the same level 3 (see e.g.
level 10 in tree in Figure 2), and the number of such collocated sub-groups cannot
be greater than n+ 1.

4.1 Proposed Algorithm for Block Encoding/Decoding

Based on the discussion above we can now define a simple algorithm for direct
computation of block codes.

We assume that parameters nk (0 6 k 6 n) are available, and that for each
non-empty sub-group we can obtain its level ℓ and its base codeword Bn,k,ℓ. Then
the process of encoding a block w is essentially a set of the following steps:

• using w obtain its weight k, and index In,k(w)

• if In,k(w) < nk use first subgroup Wn,k,ℓ otherwise pick Wn,k,ℓ+1

• retrieve base codeword and compute the code according to (16).

3This is one of the most obvious differences between our algorithm and Connell [5], or Moffat
and Turpin [27] algorithms, which assign unique base codewords for each level, but then they need
an O(n 2n)-large reordering table to work with such codes. Here, the entire structure is O(n2) bits
large. Also, unlike [38], [39] our algorithm does not assume any particular order of probabilities
based on weight k. This way we can implement codes for universal densities (4), and (6).
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Algorithm 1 Direct construction of block codes.

/* encoder structure: */

typedef struct {

unsigned short nk[N+1]; /* # of elements in first (n,k) subgroup */

unsigned char sg[N+1][2]; /* (k,j) -> subgroup index mapping */

unsigned char len[S]; /* subgroup -> code length mapping */

unsigned int base[S]; /* subgroup -> base codeword mapping */

} ENC;

/* block encoder: */

unsigned block_enc (unsigned w, ENC *enc, BITSTREAM *bs)

{

unsigned i, j, k, len, code;

k = weight(w); /* split w into (k,index) */

i = index(n,k,w);

if (i >= enc->nk[k]) { /* find subgroup containing w */

i -= enc->nk[k]; /* adjust index */

j = enc->sg[k][1];

} else

j = enc->sg[k][0];

code = enc->base[j] + i; /* generate code */

len = enc->len[j];

put_bits(code, len, bs); /* write code to bitstream */

return k;

}

A complete C-language code of such a procedure is presented as Algorithm 1
above.

It can be seen that memory-wise this algorithm needs only S base codewords
(O(n)-bit long4), n+1 values nk (O(n)-bit long), S code lengths (O(log n)-bit long),
and 2 (n + 1) subgroup indices (O(log n)-bit long). Given the fact that S = O(n),
the entire structure needs O(n2) bits.

In a particular implementation shown in Algorithm 1, and assuming, e.g. that
n = 20 and S = 32, the size of this structure becomes 244 bytes - far less than 220

words needed to present this code in a form of a direct table.
We note that for reasonably short blocks (e.g. n 6 12 . . . 16) computation of

their weights and indices (functions weight(.) and index(.,.) in Algorithm 1),
can be a matter of a single lookup, in which case, the entire encoding algorithm
needs at most 1 comparison, 2 additions, and 4 lookups.

For larger blocks, one can use the following well-known combinatorial formula
(cf. [28], [2], [33], [6], [38], [39]):

In,k(w) =

n∑
j=1

wj

(
n− j∑n
k=j wk

)
, (18)

4We note that additional memory reduction is possible by storing incremental values of base
codewords – this is discussed in a companion paper [32].
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where wj represent individual bits of the word w, and it is assumed that
(
n
k

)
= 0

for all k > n. In order to implement it, one could either pre-compute all binomial
coefficients up to level n in Pascal’s triangle, or compute them dynamically, using
the following simple identities:(

n− k

k − 1

)
=

k

n

(
n

k

)
, and

(
n− k

k

)
=

n− k

n

(
n

k

)
.

The implementation based on pre-computed coefficients requires n (n+1)
2 = O

(
n2

)
words (O(n3) bits) of memory, and O(n) additions. Dynamic computation of co-
efficients will require O(n) additions, multiplications and divisions, but the entire
process needs only few registers. Additional discussion on complexity of index com-
putation can be found in [39].

We now turn our attention to the design of a decoder. Here, we will also need
parameters nk, base codewords, and their lengths. For further convenience (as it
was suggested by Moffat and Turpin [27]) we will use left-justified versions of base
values:

Blj
n,k,ℓ = Bn,k,ℓ 2

T−ℓ , (19)

where T is the length of a machine word (T > max ℓ). We will store such left-
justified values in a lexicographically decreasing order. Then, the decoding process
can be described as follows:

• find first (top-most) subgroup with Blj
n,k,ℓ being less than last T bits in bit-

stream,

• decode index of a block In,k(w) (based on (16)), and

• produce reconstructed block using its weight k and index.

A complete C-language code of such a procedure is presented as Algorithm 2.
We note that (besides using left-justified base words) this algorithm has almost

identical data structure. The only new elements here are weights k and subgroup
level indicators j (j = 0 if subgroup contains shorter codewords, and j = 1 other-
wise). Memory-wise it has very similar characteristics.

The main decoding process requires between 1 and S comparisons and lookups
to find a subgroup, 1 or 2 additions, 1 shift, 1 extra comparison, and 3 extra lookups.

As in Moffat-Turpin algorithm [27] the number of steps needed for finding a
subgroup can be further reduced by placing base codewords in a binary search tree
or using an extra lookup table, but in both cases we need to use extra memory to
accomplish this.

We note, that at the end of the decoding process we also need to convert word’s
weight k and index In,k(w) into its actual value (function word() in Algorithm 2). If
blocks are reasonably short, this can be accomplished by a simple lookup. Otherwise,
we can synthesize the word by using the enumeration formulae (18). Complexity-
wise this process is similar to index computation in the encoder.

5 Design of an Adaptive Block Coder

Using above described algorithms we can now define a system for adaptive encod-
ing/decoding of blocks of data.
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Algorithm 2 Decoding of a block codes.

/* decoder structure: */

typedef struct {

unsigned short nk[N+1]; /* # of elements in first (n,k) subgroup */

struct {unsigned char k:7,j:1;} kj[S]; /* subgroup -> (k,j) mapping */

unsigned char len[S]; /* subgroup -> code length mapping */

unsigned int lj_base[S]; /* subgroup -> left-justified codewords */

} DEC;

/* block decoder: */

unsigned block_dec (unsigned *w, DEC *dec, BITSTREAM *bs)

{

unsigned i, j, k, len, val;

val = bitstream_buffer(bs);

for (j=0; dec->lj_base[j]>val; j++) ; /* find a subgroup */

len = dec->len[j];

scroll_bitstream(len, bs); /* skip decoded bits */

i = (val - dec->lj_base[j]) >> (32-len);

k = dec->kj[j].k; /* get weight */

j = dec->kj[j].j; /* get sub-group index */

if (j) /* reconstruct index */

i += dec->nk[k];

*w = word(n,k,i); /* generate i-th word in (n,k) group */

return k;

}

In this system, we assume that input blocks can be encoded under the following
conditions:

1. there is no context - i.e. we implement universal code,

2. the context is given by one previously seen block - i.e. t = n,

3. the context is given by two previously seen blocks - i.e. t = 2n.

We note, that instead of using actual blocks as contexts it is sufficient (due to
memoryless nature of the source) to use their weights.

This means, that for t-bit samples, we will need to have an array of t + 1 code
structures indexed by their weights s. To further save space, we can use symmetry
of KT-distributions (6) with respect to s and k: replace s = t− s and flip bits (i.e.
force k = n − k) every time when s > t/2. This way we will only need to define
t/2 + 1 tables.

Hence, the overall amount of memory needed by our adaptive code becomes
1 + n/2 + 1 + n + 1 = 1.5n + 3 tables. Specific memory estimates for block sizes
n = 8 . . . 20, are shown in Table 2.

In out test implementation we’ve generated all these tables using KT-estimated
densities (4) and (6), and using modified Huffman code- construction algorithm, as
described in Section 3.
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Table 2: Memory usage estimates [in bytes] for different block sizes

n max t maxS Size of a single table Tables for all contexts
8 16 14 102 1530
12 24 19 140 2940
16 32 25 184 4968
20 40 29 216 7128

In Appendix B we provide a complete code of a program implementing such an
encoding system.

6 Experimental Study of Performance of our Algorithm

In this section we provide experimental results of evaluation of performance of our
adaptive code with block size n = 16, and compare it with the following well known
algorithms:

• IBM’s Q-coder algorithm [41] adopted in JBIG standard for image compres-
sion [42] (we’ve used implementation from JBIG’s jbigkit);

• CABAC binary arithmetic encoder [43] from MPEG AVC/ITU-T H.264 stan-
dard for video coding [44].

In order to conduct our tests we’ve used computed-generated sequences of bits
simulating output from a binary Bernoulli source with probability p. Lengths of such
sequences ranged from 16 to 1024, and for each particular length we have generated
Q = 1000000 samples of such sequences.

Relative redundancy rates were computed as:

Rate =
(sum of lengths of all codes produced for Q sequences)/Q−H(p)

H(p)

For our adaptive code we’ve used the following structure of contexts:

• first 16-bit block is encoded without context (universal code),

• second block is encoded using first one as its context (code with t = 16),

• third and all subsequent blocks are encoded using two previous blocks in a
sequence as contexts (sample-based code with t = 32).

The results of our experimental study are shown in Figures 3 and 4. It can
be seen that our code has a much faster rate of convergence than that of Q-coder
or CABAC algorithms. It clearly outperforms them for short sequences, and be-
comes comparable to the best of these two when the total length of encoded bits
approaches 1024.

In Figure 4 we also show analysis of sensitivity of redundancy rates of these
codes to asymmetry of the source. Here, after 160 encoded bits (or 10 16-bit blocks)
our algorithm delivers much lower redundancy compared to others. Its behavior is
consistent with one that was predicted by our Theorem 1.
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Figure 3: Comparison of redundancy rates under memoryless sources with p = 0.1
(left) and p = 0.5 (unbiased case, right).
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Figure 4: Sensitivity of redundancy to asymmetry of the source.
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A Proof of Theorem 1

We need to evaluate average redundancy of an adaptive code ϕ∗
u working with sam-

ples of length t and blocks of length n produced by a binary memoryless source with
parameter p:

Rϕ∗
u
(n, t, p) =

1

n

∑
|u|=t

∑
|w|=n

Pr(u) Pr(w) |ϕu(w)| −H(p) . (20)

We will further assume that each codeword ϕu(w) is generated on the basis
of KT-estimated probability PKT (w|u) (6), and therefore we can rewrite (20) as
follows:

Rϕ∗
u
(n, t, p) =

1

n

∑
|u|=t

∑
|w|=n

Pr(u) Pr(w) logP−1
KT (w|u)−H(p)+

1

n
∆ϕ∗

u
(n, t, p) , (21)

where by

∆ϕ∗
u
(n, t, p) =

∑
|u|=t

∑
|w|=n

Pr(u) Pr(w) [|ϕu(w)|+ logPKT (w|u)] (22)

we denote the redundancy of code ϕ∗
u with respect to the distribution it implements.

We know, that given density PKT (w|u) most existing minimum redundancy
block codes (such as block Huffman, or Shannon algorithms) produce codewords
such that:

⌊logPKT (w|u)⌋ 6 |ϕu(w)| 6 ⌈logPKT (w|u)⌉ ,

which implies that ∆ϕ∗
u
(n, t, p) is a quantity of bounded magnitude:∣∣∆ϕ∗

u
(n, t, p)

∣∣ 6 1 ,

and which might have some erratic or oscillating behavior (cf. [36], [9]).
We now focus our attention on the main sum in (21):

−
∑
|u|=t

∑
|w|=n

Pr(u) Pr(w) logPKT (w|u) =

= −
∑

|uw|=t+n

Pr(uw) logPKT (uw) +
∑
|u|=t

Pr(u) logPKT (u)

= (t+ n)CKT (t+ n, p)− t CKT (t, p) , (23)

where

CKT (n, p) = − 1

n

∑
|w|=n

Pr(w) logPKT (w) , (24)

is the average rate of the KT-estimator processing n-symbols words produced by p.

A.1 Asymptotic average rates of empirical entropy and KT-estimator

Consider KT-estimated probability of a word w

PKT (w) =
Γ (k + 1/2) Γ (n− k + 1/2)

πΓ (n+ 1)
.
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Using Stirling’s approximation (and excluding cases when k = 0, n), we can show
that:

− logPKT (w) = nF (w) +
1

2
log n+

1

2
log

π

2
+

1

12n

+
1

24 k
+

1

24 (n− k)
+O

(
1

k3
+

1

(n− k)3

)
, (25)

where:

F (w) = −k

n
log

(
k

n

)
− n− k

n
log

(
n− k

n

)
. (26)

is an empirical entropy [13, 24] of a word w.
The average rate of the empirical entropy F (w) under source p is:∑

|w|=n

Pr(w)F (w)

= −
n∑

k=0

(
n

k

)
pkqn−k

[
k

n
log

(
k

n

)
+

n− k

n
log

(
n− k

n

)]

= log n−
n∑

k=1

(
n

k

)
pkqn−k k

n
log(k)−

n−1∑
k=0

(
n

k

)
pkqn−kn− k

n
log (n− k)

= log n− p
n∑

k=1

(
n− 1

k − 1

)
pk−1qn−k log(k)− q

n−1∑
k=0

(
n− 1

k

)
pkqn−1−k log (n− k)

= log n− p f(n− 1, k, p)− q f(n− 1, k, q) . (27)

where:

f(n, k, θ) =

n∑
k=0

(
n

k

)
θk(1− θ)n−k log (1 + k) . (28)

We immediately notice that (28) belongs to a class of so-called binomial sums
(see, e.g. [3, p. 92]), and that for large n we must have (a uniform in θ) convergence
f(n, k, θ) → log (1 + θ n). However, in order to obtain a more detailed asymptotic of
f(n, k, θ), one must use analytic techniques, such as analytic depoissonization [19,
20], or singularity analysis of generating functions [15].

In fact, the last approach in application to a class of polylogarithmic Bernoulli
sums has already been used by P. Flajolet [14], and in particular, he has shown that

n∑
k=1

(
n

k

)
θk(1− θ)n−k log k = log (θ n) +

θ − 1

2 θ n
− θ2 − 6 θ + 5

12 θ2n2
+O

(
1

n3

)
,

which is a very similar sum to one that we need to evaluate (28). To take advantage
of this existing result, we simply replace log(1 + k) in (28) with:

log(k+1) = log(k)+
1

k + 1
+

1

2

1

(k + 1)(k + 2)
+

5

6

1

(k + 1)(k + 2)(k + 3)
+ . . . . (29)
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The evaluation of the sums containing factorial powers of k yields:

S1(n, θ) =

n∑
k=1

(
n

k

)
θk(1− θ)n−k 1

k + 1

=
1

θ (n+ 1)
[1− (1− θ)n − θ n (1− θ)n]

=
1

θ n
− 1

θ n2
+O

(
1

n3

)
, (30)

S2(n, θ) =

n∑
k=1

(
n

k

)
θk(1− θ)n−k 1

(k + 1)(k + 2)

=
1

θ2 (n+ 1) (n+ 2)

[
1− (1− θ)n − θ n (1− θ)n − θ2 n (n+ 1)

2
(1− θ)n

]
=

1

θ2 n2
+O

(
1

n3

)
, (31)

and it is clear that the contribution of the subsequent terms in (29) to the sum (28)
is within O

(
1
n3

)
.

Combining the above formulae, we obtain

f(n, k, θ) = log (θ n) +
1 + θ

2 θ n
− θ2 + 6 θ − 1

12 θ2n2
+O

(
1

n3

)
, (32)

and subsequently (after plugging (32) in (27) and some simple algebra):∑
|w|=n

Pr(w)F (w) = H(p)− 1

2n
+

pq − 1

12 p q n2
+O

(
1

n3

)
, (33)

which is an (up to O
(

1
n3

)
-term) accurate asymptotic expression for the average rate

of empirical entropy.
We now focus our attention on the average rate of the KT-estimator (24). Us-

ing our asymptotic expression (25) and replacing 1
k and 1

n−k with the appropriate
factorial powers we can show that:

CKT (n, p) = − 1

n

∑
|w|=n

Pr(w) logPKT (w)

=
∑
|w|=n

Pr(w)F (w) +
1

n

{
1

2
log n+

1

2
log

π

2
+

1

12n

+
1

24
[S1(n, p) + S2(n, p)] +

1

24
[S1(n, q) + S2(n, q)]

}
+O

(
1

n4

)
, (34)

where S1(n, θ) and S2(n, θ) are already familiar sums (30) and (31).
Now by using (33) and expanding all the expressions in (34) we finally obtain:

CKT (n, p) = H(p) +
1

2n

{
log n+ log

π

2
− 1− 1− 4 p q

12 pq n
+

1− 3 pq

12 p2q2 n2

}
+O

(
1

n4

)
. (35)
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A.2 Asymptotic average rate of the adaptive block code

Using (21-24) we can now say that

Rϕ∗
u
(n, t, p) =

1

n

[
(t+ n)CKT (t+ n, p)− t CKT (t, p)− nH(p) + ∆ϕ∗

u
(n, t, p)

]
,

(36)
where CKT (n, p) is the average rate of the KT-estimator (24).

By applying our asymptotic result (35) for CKT (n, p) and combining the remain-
ing (after some cancellations) terms we arrive at

Rϕ∗
u
(n, t, p) =

1

n

{
1

2
log

t+ n

t
+∆ϕ∗

u
(n, t, p) +

1− 4 p q

24 pq

n

t (t+ n)

−1− 3 pq

24 p2q2
(n+ 2 t)n

t2 (t+ n)2
+O

(
1

t3
+

1

n3

)}
,

which is formula (8) claimed by our theorem.

B Example implementation of adaptive block coder
/* bitstream.h: */

typedef struct _BITSTREAM BITSTREAM;

void bitstream_open(BITSTREAM *p, unsigned char *pbs, unsigned bit_offset, int read);

void bitstream_close(BITSTREAM *p, unsigned char **p_pbs, unsigned *p_bit_offset, int write);

void put_bits(unsigned bits, int len, BITSTREAM *p);

unsigned bitstream_buffer(BISTREAM *p);

void scroll_bitstream(int len, BITSTREAM *p);

/* blade.h: */

/* encoder functions: */

void blade_enc_init(void);

unsigned blade_enc_0(unsigned block, BITSTREAM *bs);

unsigned blade_enc_1(unsigned block, unsigned cx, BITSTREAM *bs);

unsigned blade_enc_2(unsigned block, unsigned cx1, unsigned cx2, BITSTREAM *bs);

/* decoder functions: */

void blade_dec_init(void);

unsigned blade_dec_0(unsigned *block, BITSTREAM *bs);

unsigned blade_dec_1(unsigned *block, unsigned cx, BITSTREAM *bs);

unsigned blade_dec_2(unsigned *block, unsigned cx1, unsigned cx2, BITSTREAM *bs);

/* blade_12.c: implements 12-bit BLADE encoder/decoder */

#define N 12 /* block size */

#define SGS 19 /* max # of subgroups */

/* encoder structure: */

typedef struct {

unsigned short nk [N+1]; /* # of elements in first (n,k) subgroup */

unsigned char len [SGS]; /* subgroup -> code length mapping */

unsigned char sg [N+1][2]; /* (k,j) -> subgroup index mapping */

unsigned int base [SGS]; /* subgroup -> base codeword mapping */

} BLADE_ENC;

/* w -> (k,index) mapping: */

static struct {unsigned short k:4, i:12;} w_ki[1<<N];

/*

* BLADE encoder:

* Returns:

* # of bits set in encoded pattern

*/

unsigned blade_enc (unsigned w, BLADE_ENC *enc, BITSTREAM *bs)

{

unsigned i, j, k, len, code;

k = w_ki[w].k; /* split w into (k,index) */

i = w_ki[w].i;

if (i >= enc->nk[k]) { /* find subgroup containing w */

i -= enc->nk[k]; /* adjust index */
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j = enc->sg[k][1];

} else

j = enc->sg[k][0];

code = enc->base[j] + i; /* generate code */

len = enc->len[j];

put_bits(code, len, bs);

return k;

}

/* decoder structure: */

typedef struct {

unsigned int sgs; /* number of subgroups */

unsigned short nk [N+1]; /* # of elements in first (n,k) subgroup */

unsigned char len [SGS]; /* subgroup -> code length mapping */

struct {unsigned char k:7,j:1;} kj [SGS]; /* subgroup -> (k,j) mapping */

unsigned int lj_base [SGS]; /* subgroup -> left-justified codewords */

} BLADE_DEC;

/* (k,index) -> w mapping:*/

static unsigned short *ki_w[N+1], _w[1<<N];

/*

* BLADE decoder:

* Returns:

* # of bits set in encoded pattern

*/

unsigned blade_dec (unsigned *w, BLADE_DEC *dec, BITSTREAM *bs)

{

unsigned i, j, k, len, val;

val = bitstream_buffer(bs);

for (j=0; j<dec->sgs; j++) /* find subgroup */

if (dec->lj_base[j] <= val)

break;

len = dec->len[j];

scroll_bitstream(len, bs); /* skip decoded bits */

i = (val - dec->lj_base[j]) >> (32-len);

k = dec->kj[j].k;

j = dec->kj[j].j;

if (j) /* convert to (n,k)-group’s index */

i += dec->nk[k];

*w = ki_w[k][i]; /* produce reconstructed block */

return k;

}

/**********************************************

* Pre-computed BLADE decoder tables:

*/

static BLADE_DEC dec_t [1+(N/2+1)+(N+1)] = {

{ /* no context/ universal code: */ 15,

{1,12,66,92,495,792,924,792,495,122,66,12,1}, {3,3,7,7,10,10,11,11,12,12,13,13,14,14,14},

{{0,0},{12,0},{1,0},{11,0},{2,0},{10,0},{3,0},{9,0},{3,1},{9,1},{4,0},{8,0},{5,0},{6,0},{7,0}},

{0xE0000000,0xC0000000,0xA8000000,0x90000000,0x7F800000,0x6F000000,0x63800000,0x54400000,

0x4C400000,0x46200000,0x36A80000,0x27300000,0x1AD00000,0x0C600000,0x00000000} },

{ /* (12,0): */ 17,

{1,8,66,64,495,792,924,792,334,220,66,11,1}, {1,5,6,9,12,13,15,17,19,20,21,22,22,23,23,24,24},

{{0,0},{1,0},{1,1},{2,0},{3,0},{3,1},{4,0},{5,0},{6,0},{7,0},{8,0},{8,1},{9,0},{10,0},{11,0},{11,1},{12,0}},

{0x80000000,0x40000000,0x30000000,0x0F000000,0x0B000000,0x06200000,0x02420000,0x00B60000,

0x00428000,0x00110000,0x00069000,0x00040C00,0x00009C00,0x00001800,0x00000200,0x00000100,0x00000000} },

{ /* (12,1): */ 16,

{1,12,17,220,495,792,924,340,495,220,66,10,1}, {2,5,8,9,11,13,15,16,17,18,18,19,19,19,19,20},

{{0,0},{1,0},{2,0},{2,1},{3,0},{4,0},{5,0},{6,0},{7,0},{7,1},{8,0},{9,0},{10,0},{11,0},{12,0},{11,1}},

{0xC0000000,0x60000000,0x4F000000,0x36800000,0x1B000000,0x0B880000,0x05580000,0x01BC0000,

0x01120000,0x00A10000,0x00254000,0x0009C000,0x00018000,0x00004000,0x00002000,0x00000000} },

{ /* (12,2): */ 15,

{1,12,66,211,495,792,924,792,486,220,66,12,1}, {3,6,8,10,11,12,14,15,16,16,17,17,17,17,17},

{{0,0},{1,0},{2,0},{3,0},{3,1},{4,0},{5,0},{6,0},{7,0},{8,0},{8,1},{9,0},{10,0},{11,0},{12,0}},

{0xE0000000,0xB0000000,0x6E000000,0x39400000,0x38200000,0x19300000,0x0CD00000,0x05980000,

0x02800000,0x009A0000,0x00958000,0x00278000,0x00068000,0x00008000,0x00000000} },

{ /* (12,3): */ 16,

{1,12,30,220,495,792,924,792,19,220,6,12,1}, {4,6,8,9,10,12,13,14,14,14,14,14,14,15,15,15},

{{0,0},{1,0},{2,0},{2,1},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{10,0},{11,0},{12,0},{8,1},{10,1},{9,0}},

{0xF0000000,0xC0000000,0xA2000000,0x90000000,0x59000000,0x3A100000,0x21500000,0x12E00000,

0x06800000,0x06340000,0x061C0000,0x05EC0000,0x05E80000,0x02300000,0x01B80000,0x00000000} },

{ /* (12,4): */ 16,

{1,12,66,220,495,303,924,792,495,219,66,4,1}, {5,7,9,10,12,12,12,12,13,13,13,13,13,13,14,14},

{{0,0},{1,0},{2,0},{3,0},{4,0},{5,0},{11,0},{12,0},{5,1},{11,1},{6,0},{7,0},{9,0},{10,0},{9,1},{8,0}},

{0xF8000000,0xE0000000,0xBF000000,0x88000000,0x69100000,0x56200000,0x55E00000,0x55D00000,

0x46880000,0x46480000,0x29680000,0x10A80000,0x09D00000,0x07C00000,0x07BC0000,0x00000000} },

{ /* (12,5): */ 15,

{1,12,66,220,495,792,509,792,350,220,66,12,1}, {6,8,10,10,11,11,12,12,12,12,12,12,13,13,13},

{{0,0},{1,0},{2,0},{12,0},{3,0},{11,0},{4,0},{5,0},{6,0},{8,0},{9,0},{10,0},{6,1},{8,1},{7,0}},

{0xFC000000,0xF0000000,0xDF800000,0xDF400000,0xC3C00000,0xC2400000,0xA3500000,0x71D00000,

0x52000000,0x3C200000,0x2E600000,0x2A400000,0x1D480000,0x18C00000,0x00000000} },

{ /* (12,6): */ 15,

{1,12,66,47,495,792,924,792,495,85,66,12,1}, {8,8,9,9,11,11,11,11,12,12,12,12,12,12,13},

{{0,0},{12,0},{1,0},{11,0},{2,0},{3,0},{9,0},{10,0},{3,1},{9,1},{4,0},{5,0},{7,0},{8,0},{6,0}},

{0xFF000000,0xFE000000,0xF8000000,0xF2000000,0xE9C00000,0xE3E00000,0xD9400000,0xD1000000,

0xC6300000,0xBDC00000,0x9ED00000,0x6D500000,0x3BD00000,0x1CE00000,0x00000000} },

{ /* (24,0): */ 19,
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{1,12,25,220,487,791,924,787,494,220,66,11,1}, {1,5,9,10,13,16,17,19,20,22,24,25,26,27,28,30,31,32,32},

{{0,0},{1,0},{2,0},{2,1},{3,0},{4,0},{4,1},{5,0},{5,1},{6,0},{7,0},{7,1},{8,0},{8,1},{9,0},{10,0},{11,0},{11,1},{12,0}},

{0x80000000,0x20000000,0x13800000,0x09400000,0x02600000,0x00790000,0x00750000,0x00122000,0x00121000,

0x0003A000,0x00008D00,0x00008A80,0x00000F00,0x00000EE0,0x00000120,0x00000018,0x00000002,0x00000001,0x00000000} },

{ /* (24,1): */ 17,

{1,7,66,220,495,326,924,792,495,4,66,11,1}, {1,5,6,9,12,15,17,18,20,22,23,24,25,26,27,28,28},

{{0,0},{1,0},{1,1},{2,0},{3,0},{4,0},{5,0},{5,1},{6,0},{7,0},{8,0},{9,0},{9,1},{10,0},{11,0},{11,1},{12,0}},

{0x80000000,0x48000000,0x34000000,0x13000000,0x05400000,0x01620000,0x00BF0000,0x004A8000,

0x0010C000,0x00046000,0x00008200,0x00007E00,0x00001200,0x00000180,0x00000020,0x00000010,0x00000000} },

{ /* (24,2): */ 17,

{1,12,47,220,495,792,924,1,495,220,58,11,1}, {2,5,8,9,11,14,16,18,19,20,21,22,23,24,24,25,25},

{{0,0},{1,0},{2,0},{2,1},{3,0},{4,0},{5,0},{6,0},{7,0},{7,1},{8,0},{9,0},{10,0},{10,1},{11,0},{11,1},{12,0}},

{0xC0000000,0x60000000,0x31000000,0x27800000,0x0C000000,0x04440000,0x012C0000,0x00450000,

0x0044E000,0x00137000,0x0003F800,0x00008800,0x00001400,0x00000C00,0x00000100,0x00000080,0x00000000} },

{ /* (24,3): */ 17,

{1,6,66,1,495,4,924,792,495,220,66,7,1}, {2,5,6,8,10,11,13,14,15,16,18,19,20,21,21,22,22},

{{0,0},{1,0},{1,1},{2,0},{3,0},{3,1},{4,0},{5,0},{5,1},{6,0},{7,0},{8,0},{9,0},{10,0},{11,0},{11,1},{12,0}},

{0xC0000000,0x90000000,0x78000000,0x36000000,0x35C00000,0x1A600000,0x0AE80000,0x0AD80000,

0x04B00000,0x01140000,0x004E0000,0x00102000,0x00026000,0x00005000,0x00001800,0x00000400,0x00000000} },

{ /* (24,4): */ 15,

{1,12,66,220,495,10,924,792,495,220,66,7,1}, {3,6,8,10,12,13,14,15,16,17,18,19,19,20,20},

{{0,0},{1,0},{2,0},{3,0},{4,0},{5,0},{5,1},{6,0},{7,0},{8,0},{9,0},{10,0},{11,0},{11,1},{12,0}},

{0xE0000000,0xB0000000,0x6E000000,0x37000000,0x18100000,0x17C00000,0x0B880000,0x04500000,

0x01380000,0x00408000,0x00098000,0x00014000,0x00006000,0x00001000,0x00000000} },

{ /* (24,5): */ 16,

{1,12,66,220,495,792,451,792,2,220,66,11,1}, {4,6,8,10,12,13,14,15,16,16,17,17,18,18,19,19},

{{0,0},{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{6,1},{7,0},{8,0},{8,1},{9,0},{10,0},{11,0},{11,1},{12,0}},

{0xF0000000,0xC0000000,0x7E000000,0x47000000,0x28100000,0x0F500000,0x08440000,0x04920000,

0x017A0000,0x01780000,0x00818000,0x00138000,0x00030000,0x00004000,0x00002000,0x00000000} },

{ /* (24,6): */ 17,

{1,8,65,220,2,792,924,792,495,220,59,12,1}, {4,6,7,8,9,10,11,12,13,14,15,16,16,16,17,17,17},

{{0,0},{1,0},{1,1},{2,0},{2,1},{3,0},{4,0},{4,1},{5,0},{6,0},{7,0},{8,0},{9,0},{10,0},{10,1},{11,0},{12,0}},

{0xF0000000,0xD0000000,0xC8000000,0x87000000,0x86800000,0x4F800000,0x4F400000,0x30700000,

0x17B00000,0x09400000,0x03100000,0x01210000,0x00450000,0x000A0000,0x00068000,0x00008000,0x00000000} },

{ /* (24,7): */ 15,

{1,12,66,220,495,62,924,792,495,220,66,8,1}, {5,7,9,10,11,12,13,13,14,15,15,15,15,15,16},

{{0,0},{1,0},{2,0},{3,0},{4,0},{5,0},{5,1},{6,0},{7,0},{8,0},{9,0},{10,0},{11,0},{12,0},{11,1}},

{0xF8000000,0xE0000000,0xBF000000,0x88000000,0x4A200000,0x46400000,0x2F700000,0x12900000,

0x06300000,0x02520000,0x009A0000,0x00160000,0x00060000,0x00040000,0x00000000} },

{ /* (24,8): */ 15,

{1,12,66,220,287,792,924,792,495,220,62,12,1}, {6,8,9,10,11,12,12,13,14,14,14,14,14,14,15},

{{0,0},{1,0},{2,0},{3,0},{4,0},{4,1},{5,0},{6,0},{7,0},{8,0},{9,0},{10,0},{11,0},{12,0},{10,1}},

{0xFC000000,0xF0000000,0xCF000000,0x98000000,0x74200000,0x67200000,0x35A00000,0x18C00000,

0x0C600000,0x04A40000,0x01340000,0x003C0000,0x000C0000,0x00080000,0x00000000} },

{ /* (24,9): */ 14,

{1,12,66,220,417,792,924,792,495,220,66,12,1}, {7,8,9,11,11,12,12,13,13,13,13,13,13,14},

{{0,0},{1,0},{2,0},{3,0},{4,0},{4,1},{5,0},{6,0},{7,0},{8,0},{10,0},{11,0},{12,0},{9,0}},

{0xFE000000,0xF2000000,0xD1000000,0xB5800000,0x81600000,0x7C800000,0x4B000000,0x2E200000,

0x15600000,0x05E80000,0x03D80000,0x03780000,0x03700000,0x00000000} },

{ /* (24,10): */ 15,

{1,12,66,220,221,792,923,792,495,220,66,12,1}, {7,9,10,11,11,12,12,12,12,12,12,13,13,13,13},

{{0,0},{1,0},{2,0},{3,0},{4,0},{4,1},{5,0},{6,0},{10,0},{11,0},{12,0},{6,1},{7,0},{8,0},{9,0}},

{0xFE000000,0xF8000000,0xE7800000,0xCC000000,0xB0600000,0x9F400000,0x6DC00000,0x34100000,

0x2FF00000,0x2F300000,0x2F200000,0x2F180000,0x16580000,0x06E00000,0x00000000} },

{ /* (24,11): */ 14,

{1,12,23,220,495,792,924,792,495,220,66,12,1}, {8,10,10,11,11,11,11,12,12,12,12,12,12,13},

{{0,0},{1,0},{2,0},{2,1},{3,0},{11,0},{12,0},{4,0},{5,0},{6,0},{8,0},{9,0},{10,0},{7,0}},

{0xFF000000,0xFC000000,0xF6400000,0xF0E00000,0xD5600000,0xD3E00000,0xD3C00000,0xB4D00000,

0x83500000,0x49900000,0x2AA00000,0x1CE00000,0x18C00000,0x00000000} },

{ /* (24,12): */ 14,

{1,12,66,220,495,792,504,792,495,220,66,12,1}, {10,10,10,10,11,11,12,12,12,12,12,12,12,13},

{{0,0},{1,0},{11,0},{12,0},{2,0},{10,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{9,0},{6,1}},

{0xFFC00000,0xFCC00000,0xF9C00000,0xF9800000,0xF1400000,0xE9000000,0xDB400000,0xBC500000,

0x8AD00000,0x6B500000,0x39D00000,0x1AE00000,0x0D200000,0x00000000} }

};

/* encoder tables (computed using decoder’s tables): */

static BLADE_ENC enc_t [1+(N/2+1)+(N+1)];

/* initialize encoder: */

void blade_enc_init()

{

unsigned int i[N+1], j, k, l, w;

/* init enc[]: */

for (j=0; j<1+(N/2+1)+(N+1); j++) {

for (k=0; k<=N; k++) enc_t[j].nk[k] = dec_t[j].nk[k];

for (k=0; k<=SGS; k++) {

enc_t[j].sg[dec_t[j].kj[k].k][dec_t[j].kj[k].j] = j;

enc_t[j].jen[k] = dec_t[j].jen[k];

enc_t[j].base[k] = dec_t[j].jj_base[k] >> (32-dec_t[j].jen[k]);

}

}

/* init w_ki[]: */

for (j=0; k<=N; k++) i[k] = 0;

for (w=0; w<(1<<N); w++) {

for (k=0,j=0; j<N; j++) if (w & (1<<j)) k++;

w_ki[w].k = k;

w_ki[w].i = i[k];

i[k] ++;

}

}
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/* initialize decoder: */

void blade_dec_init()

{

static short b[N+1] = {1,12,66,220,495,792,924,792,495,220,66,12,1};

unsigned int i[N+1], j, k, w;

/* init ki_w[]: */

for (j=0,k=0; k<=N; j+=b[k],k++) {ki_w[k] = _w + j; i[k] = 0;}

for (w=0; w<(1<<N); w++) {

for (k=0,j=0; j<N; j++) if (w & (1<<j)) k++;

ki_w[k][i[k]] = w;

i[k] ++;

}

}

/* encoder’s functions: */

unsigned blade_enc_0 (unsigned w, BITSTREAM *bs)

{

return blade_enc (w, enc_t + 0, bs);

}

unsigned blade_enc_1 (unsigned w, unsigned cx, BITSTREAM *bs)

{

unsigned r;

if (cx > N/2)

r = N - blade_enc (w ^((1<<N)-1), enc_t + 1 + N - cx, bs);

else

r = blade_enc (w, enc_t + 1 + cx, bs);

return r;

}

unsigned blade_enc_2 (unsigned w, unsigned cx1, unsigned cx2, BITSTREAM *bs)

{

unsigned cx = cx1 + cx2, r;

if (cx > N)

r = N - blade_enc (w ^((1<<N)-1), enc_t + 1 + (N/2 + 1) + 2*N - cx, bs);

else

r = blade_enc (w, enc_t + 1 + (N/2 + 1) + cx, bs);

return r;

}

/* decoder’s functions: */

unsigned blade_dec_0 (unsigned *w, BITSTREAM *bs)

{

return blade_dec (w, dec_t + 0, bs);

}

unsigned blade_dec_1 (unsigned *w, unsigned cx, BITSTREAM *bs)

{

unsigned b, r;

if (cx > N/2) {

r = N - blade_dec (&b, dec_t + 1 + N - cx, bs);

b ^= (1<<N)-1;

} else

r = blade_dec (&b, dec_t + 1 + cx, bs);

*w = b;

return r;

}

unsigned blade_dec_2 (unsigned *w, unsigned cx1, unsigned cx2, BITSTREAM *bs)

{

unsigned cx = cx1 + cx2, b, r;

if (cx > N) {

r = N - blade_dec (&b, enc_t + 1 + (N/2 + 1) + N*2 - cx, bs);

b ^= (1<<N)-1;

} else

r = blade_dec (&b, enc_t + 1 + (N/2 + 1) + cx, bs);

*w = b;

return r;

}

/* main.c - test program and demo: */

#define M 1000 /* max # of blocks in test sequence */

#define Q 1000000 /* # of iterations */

/* test program: */

int main ()

{

/* in/out buffers: */

static unsigned char in_buffer [M*N/8];

static unsigned char out_buffer [M*N/8 + 1024];

static BITSTREAM in, out;

/* vars: */

unsigned char *pbs; int bit_offset;

unsigned int w, cx, cx1 = 0, cx2 = 0;

int i, j, k, m;

double p, h, c;

/* init BLADE-12 library: */

blade_init ();
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/* scan sources: */

for (p=0.01; p<=0.991; p+=0.01) {

/* estimate entropy: */

h = - (p * log(p) + (1.-p) * log(1.-p)) / log(2.);

printf ("\np=%g, h=%g\n", p, h);

/* try different # of blocks: */

for (m=1; m<M; m++)

{

c = 0.;

/* reset generator: */

srand(1);

/* make Q runs: */

for (i=0; i<Q; i++) {

/* generate test sequence: */

memset(in_buffer, 0, sizeof in_buffer);

bitstream_open(&in, in_buffer, 0, 0);

for (j=0; j<N*m; j++) {

/* get a next bit from a pseudo-Bernoulli source: */

k = ((double) rand() / (double) RAND_MAX) > (1. - p);

/* insert it in bitstream: */

put_bits(k, 1, &in);

}

bitstream_close (&in, &pbs, &bit_offset, 1);

/* start encoding: */

memset(out_buffer, 0, sizeof out_buffer);

bitstream_open(&out, out_buffer, 0, 0);

bitstream_open(&in, in_buffer, 0, 1);

/* run the encoder: */

for (j=0; j<m; j++) {

/* block to be encoded: */

w = (unsigned)get_bits (N, &in);

/* choose context and encode: */

if (j == 0)

cx1 = blade_enc_0 (w, &out); /* no context */

else if (j == 1)

cx2 = blade_enc_1 (w, cx1, &out); /* use cx1 */

else {

cx = blade_enc_2 (w, cx1, cx2, &out); /* use cx1 and cx2 */

/* scroll contexts: */

cx1 = cx2;

cx2 = cx;

}

}

/* close bitstreams: */

bitstream_close (&in, &pbs, &bit_offset, 0);

bitstream_close (&out, &pbs, &bit_offset, 1);

/* compute coding cost: */

c += (double)((pbs - out_buffer) * 8 + bit_offset) / (double)(m*N);

/* start decoding: */

bitstream_open (&in, in_buffer, 0, 1);

bitstream_open (&out, out_buffer, 0, 1);

/* run the decoder: */

for (j=0; j<m; j++) {

/* choose the context and decode: */

if (j == 0)

cx1 = blade_dec_0 (&w, &out); /* no context */

else if (j == 1)

cx2 = blade_dec_1 (&w, cx1, &out); /* use cx1 */

else {

cx = blade_dec_2 (&w, cx1, cx2, &out); /* use cx1 and cx2 */

/* scroll contexts: */

cx1 = cx2;

cx2 = cx;

}

/* compare with the original block: */

if (w != get_bits (N, &in)) {

printf("?%d,", j);

}

}

/* close bitstreams: */

bitstream_close (&in, &pbs, &bit_offset, 0);

bitstream_close (&out, &pbs, &bit_offset, 0);

}

/* print results: */

c /= (double)Q;

printf("[%d,%g], ", m*N, (c-h)/h);

fflush(stdout);

}

}

return 1;

}
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