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ABSTRACT

Network latency remains the bottleneck for mobile visual
search applications. We show how network latency can be
reduced using Compressed Histogram of Gradient (CHoG)
descriptors. We study the trade-off in Classification Ac-
curacy (CA) and bitrate for different parameters of CHoG
descriptors. We show how CHoG bitstreams can be used
in a rate-scalable manner. The embedded representation of
CHoG bitstreams reduces transmission delay and enables
early termination on the server side. We obtain a 2-4x de-
crease in system latency using CHoG descriptors compared
to transmitting uncompressed SIFT descriptors or JPEG
images in a 3G network.
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1. INTRODUCTION

Mobile phones have evolved into powerful image and video
processing devices, equipped with high-resolution camera,
color displays, and hardware-accelerated graphics. They are
also equipped with location sensors, GPS receivers, and con-
nected to broadband wireless networks allowing fast trans-
mission of information. This enables a class of applications
which use the camera phone to initiate search queries about
objects in visual proximity to the user. Such applications
can be used for identifying products, comparison shopping,
finding information about movies, CDs, real estate or prod-
ucts of the visual arts. Google Goggles [1], Nokia Point and
Find [2] and Snaptell [3] are examples of recently developed
commercial applications. For these applications, a query
photo is taken by a mobile device and compared against
previously stored database photos. A set of image feature
descriptors is used to assess the similarity between the query
photo and each database photo.
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Figure 1: A mobile CD cover recognition system
where the server is located at a remote location.
Feature descriptors are extracted on the mobile-
phone and query feature data is sent over the net-
work. Once the CD cover is recognized on the
server, identification data is sent back to the mobile-
phone.

The system latency can be broken down into 3 compo-
nents: (a) Processing time on mobile client (b) Network la-
tency and (c) Processing time on server. In prior work [16,
15], we show that the processing time on the server and client
is ~1 second each, while the network transmission typically
is the bottleneck in a 3G system. Hence, the size of the data
sent over the network needs to be as small as possible to
reduce latency and improve user interaction. To reduce net-
work latency, we extract feature descriptors on the phone,
compress the descriptors and transmit them over the net-
work as illustrated in Figure 1. Such an approach has been
demonstrated to reduce the amount of transmission data
significantly compared to transmitting a JPEG compressed
image [7, 6]. In this work, we focus on how transmission
delay can be minimized using progressive transmission of
compressed descriptors.

1.1 Prior Work

In [15], we present a state-of-the-art mobile product recog-
nition system using a camera phone. The product is recog-
nized through an image-based retrieval system located on a
remote server. We provide experimental timings for differ-
ent parts of the system, and show that transmission delay
remains the bottleneck for 3G networks.

Low bitrate descriptors are critical for achieving low la-
tency. In [7, 6], we propose a framework for computing low
bitrate feature descriptors called Compressed Histogram of
Gradients (CHoG). In [5], we perform a comprehensive sur-
vey of SIFT compression schemes and show that CHoG out-
performs all schemes. We show that the CHoG descriptor
at 60 bits matches the performance of the 128 dimensional
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Figure 2: The DAISY spatial binning configurations
used for n = 9,13,17 spatial bins.

1024-bit SIFT descriptor [11].

Progressive transmission is common in the domain of im-
age and video compression. E.g., JPEG2000 uses layering
which allows for progressive transmission and rendering of
images. This enables a client to display an image quickly by
decoding only a portion of the image that it has received.
As additional data is received by the client, the image can
be progressively improved. Here, we show how progressive
transmission can be applied to feature descriptors. In this
work, we demonstrate progressive transmission of CHoG de-
scriptors, but the ideas are also applicable to SIFT [11],
SURF [4] and GLOH [12].

1.2 Contributions

In this work, we provide a thorough evaluation of CHoG
descriptors in a large-scale retrieval system. We show how
the CHoG bitstream can be used in a rate-scalable man-
ner. The embedded representation of the CHoG descriptor
reduces transmission delay and enables early termination
on the server side. We report system latency in a 3G net-
work for a CHoG based retrieval system. Using embedded
CHoG descriptors, there’s a 2-4x decrease in system latency
compared to transmitting uncompressed SIFT descriptors or
JPEG images.

1.3 Outline

We organize the paper as follows. In Section 2, we review
the CHoG descriptor. In Section 3, we provide an overview
of the retrieval system. In Section 4, we provide experimen-
tal results for our retrieval system.

2. EMBEDDED CHOG DESCRIPTOR

CHoG [7] is a Histogram of Gradients descriptor that is
designed to work well at low bitrates. We highlight some
key aspects of the descriptor here and readers are referred
to [7, 6] for more details.

2.1 Descriptor Review

First, we divide the patch into soft log polar spatial bins
using DAISY configurations proposed in [18]. Next, the joint
(dz,dy) gradient histogram in each spatial bin is captured
directly into the descriptor. CHoG histogram binning ex-
ploits the skew in gradient statistics that are observed for
patches extracted around keypoints. Finally, CHoG retains
the information in each spatial bin as a distribution. This
allows the use of more effective distance measures like KL
divergence, and more importantly, enables efficient quanti-
zation and compression. Typically, 9 to 13 spatial bins and
3 to 9 gradient bins are chosen resulting in 27 to 117 di-
mensional descriptors. The spatial and gradient binning are
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Figure 3: The joint (d.,d,) gradient distribution (a)
over a large number of cells, and (b), its contour
plot. The greater variance in y-axis results from
aligning the patches along the most dominant gra-
dient after interest point The quantization bin con-

stellations VQ-3, VQ-5, VQ-7 and VQ-9 and their
associated Voronoi cells are shown at the bottom.

illustrated in Figures 2 and 3.

We quantize the gradient histogram in each cell individu-
ally and map it to an index. The indices are encoded with
fixed length or entropy codes, and the bitstream is concate-
nated together to form the final descriptor. Fixed-length
encoding provides the benefit of compressed domain match-
ing at the cost of a small performance hit. In prior work [7,
6], we have explored several schemes for histogram compres-
sion: Huffman Trees, Type Coding and optimal Lloyd-Max
VQ. In this work, we use Type Coding, which is linear in
complexity to the number of histogram bins and performs
close to optimal Lloyd-Max VQ [6].

2.2 Spatial Embedding

Since each spatial bin is encoded individually, the CHoG
descriptor can be used in a rate-scalable manner. The DAISY
spatial binning naturally lends itself to progressive transmis-
sion. For a set of descriptors, we first transmit the encoded
data belonging to the inner spatial bins in the DAISY con-
figuration, followed by data for the outer spatial bins. This
is illustrated in Figure 4. Next, we show how embedded de-
scriptors can be used in a retrieval system to achieve low
latency.

3. RETRIEVAL SYSTEM

In this section, we provide an overview of the retrieval
system for embedded descriptors. We show how progressive
transmission on the client enables early termination on the
server, and reduces transmission delay.

3.1 Client

We extract CHoG descriptors on the mobile device and
transmit them over the network as illustrated in Figure 1.
We extract 300 to 700 CHoG descriptors on the mobile de-
vice. We report results for DAISY-9 spatial binning, and
VQ-5 and VQ-7 gradient binning in our experiments.

For DAISY-9 spatial binning, we refer to the inner 5 spa-
tial bins as the Base Layer and the outer 4 spatial bins as
the Enhancement Layer. The transmission order of bits is
illustrated in Figure 4. The encoded data for Base Layer
from all descriptors is transmitted followed by the encoded



Layer Gradient Bits /
binning | descriptor
Base VQ-5 25
Base+Enhancement VQ-5 48
Base VQ-7 37
Base+Enhancement VQ-7 70

Table 1: CHoG descriptor parameters for DAISY-
9 spatial binning. Base Layer refers to the inner 5
spatial bins. Enhancement Layer refers to the outer
4 spatial bins.
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Figure 4: Transmission order of bits on the client.
The DAISY-9 spatial bin configuration is overlaid
on a set of scaled and oriented patches. ¢;; refers to
the encoded distribution in i*" feature and j*" spatial
bin. The encoded distributions belonging to the in-
ner spatial bins are transmitted first (Base Layer), fol-
lowed by the outer spatial bins (Enhancement Layer).

data from Enhancement Layer. The location data for fea-
tures is compressed using the scheme proposed in [17]. The
location data is transmitted along with Base Layer descrip-
tor data. The parameters for chosen CHoG descriptors are
shown in Table 1.

3.2 Server

We briefly describe the retrieval pipeline for CHoG de-
scriptors which builds on state-of-the-art proposed in [13,
14]. The server processing is illustrated in Figure 5. We
train multiple Vocabulary Trees (VT) [13] with depth 6 and
branch factor 10, resulting in trees with 10° leaf nodes. A
VT is trained for Base Layer embedded descriptors and
the full descriptors encompassing both Base Layer and En-
hancement Layer. Once the data for Base Layer is received,
the server can start the recognition process. If a match is
found with Base Layer data, the server early terminates and
send a response back to the client. In Section 4, we show
how early termination can reduce application latency.

We use soft-assignment for quantization of descriptors to
the 3 nearest centroids in each VT [14]. For each VT, we use
the standard Term Frequency-Inverse Document Frequency
(TF-IDF) scheme [13] that represents query and database
images as sparse vectors of visual word occurrences, and
compute a similarity between each query and database vec-
tor. We use the weighting scheme proposed in [13] which
reduces the contribution of less descriminative descriptors.
We use geometric constraints to re-rank the list of top 500
images [10]. Finally, we consider upto 50 images for pairwise
matching with a RANSAC [9] affine consistency check.
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Figure 5: Server Architecture. We store multiple
Vocabulary Trees on the server, one for each em-
bedded layer. The server starts the recognition pro-
cess once data for an embedded layer is received. If
a match is found with Base Layer data, the server
early terminates and returns a response to the mo-
bile client.
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Figure 6: A clean database picture (top) is matched
against a real-world picture (bottom) with various dis-
tortions.

4. RESULTS

For evaluation, we use a database of one million CD,DVD
and book cover images, and a set of 1000 query images [8] ex-
hibiting challenging photometric and geometric distortions,
as shown in Figure 6. Each image has 500 x 500 pixels
resolution. We define Classification Accuracy (CA) as the
percentage of query images correctly retrieved.

First, in Figure 7 (a), we study the performance of em-
bedded CHoG descriptors in a retrieval system. The maxi-
mum accuracy achieved by the system is ~97.5%. For each
configuration, the performance improves as the number of
features increases and typically plateaus off. The higher
bitrate descriptors plateau off at higher CA. For each con-
figuration, there is typically a 2-4% increase in CA after the
Enhancement Layer data are received compared to only the
embedded Base Layer data. This implies that early termi-
nation can be achieved for a majority of query images once
the embedded Base Layer data is received. Next, we show
how early termination can reduce application latency.

In Figure 7 (b), we report the transmission delay for em-
bedded CHoG descriptors over a typical 3G wireless net-
work. The data transmission experiments are conducted
over several days, with a total of more than 5000 trans-
missions at indoor locations where a image-based retrieval
system would be typically used. The typical difference in
transmission delay between Base Layer and the full data is
1-1.5 seconds. Figure 7 (b) can be interpreted as follows: At
any operating point, the savings in latency is the difference
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Figure 7: Retrieval results for embedded CHoG de-
scriptors are shown in Figure (a). The correspond-
ing transmission times in a 3G network are shown
in Figure (b). The dotted and solid curves corre-
spond to the performance of the system after Base
Layer and Enhancement Layer data are received re-
spectively. Points corresponding to the embedded
and full data are represented by the same marker
on the dotted and solid curves.

between the corresponding points on the Base Layer and
Enhancement Layer curves, if a match is found with Base
Layer data. E.g., for the lowest VQ-5 bitrate point, we can
early terminate with 87% probability after the Base Layer
data are received, and we reduce the end-to-end latency by
1.5 seconds. Once a match is found with Base Layer data,
the server early terminates and sends a response to the mo-
bile client. The different CHoG parameters allow trade-off
in bitrate and CA. The operating point is chosen based on
latency requirements of the system.

Next, we compare transmitting embedded CHoG descrip-
tors to uncompressed SIFT descriptors or JPEG compressed
images in Figure 8. For the JPEG scheme in Figure 8, the
bitrate is varied by changing the quality of compression.
For the SIFT scheme in Figure 8, each SIFT descriptor is
transmitted uncompressed as 1024 bits (128 dimensions x 8
bits/dimension). For SIFT, we sweep the CA-bitrate curve
by varying the number of descriptors transmitted. For the
CHoG VQ-5 and VQ-7 schemes, we plot the average bitrate
required for recognition with early termination. The aver-
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Figure 8: Bitrate comparisons of different schemes.
Using embedded CHoG descriptors reduces the data
by an order of magnitude compared to transmitting
JPEG images or uncompressed SIFT descriptors.
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Figure 9: Processing time for different schemes. We
achieve 2-4x reduction in end-to-end latency using
embedded CHoG descriptors with early termina-
tion.

age bitrate, in the presence of early termination, is computed
as a weighted average of the Base and Enhancement layer
bitrates in Figure 7 (a).

We observe that the performance of the JPEG scheme
rapidly deteriorates at low bitrates. The performance suf-
fers at low bitrates as the interest point detection fails due
to blocking artifacts introduced by JPEG compression. We
also note that transmitting uncompressed SIFT data is al-
most always more expensive than transmitting JPEG com-
pressed images. We observe in Figure 8 that CHoG descrip-
tors are an order of magnitude smaller than JPEG images
or SIFT descriptors.

Finally, in Figure 9, we study the end-to-end latency at
the highest accuracy point (97.5%) for the different schemes.
For the JPEG scheme, there is no processing on the client.
For the SIFT and CHoG schemes, ~1 second is spent ex-
tracting features on the mobile client. For embedded CHoG
descriptors, we compute the average transmission time as a
weighted average of the Base and Enhancement layer tim-
ings in Figure 7 (b). We achieve a 2x reduction in sys-
tem latency with embedded CHoG descriptors compared
to JPEG images, and a 4x reduction compared to uncom-
pressed SIFT descriptors.
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CONCLUSION

We demonstrate how network latency can be reduced sig-
nificantly using Compressed Histogram of Gradient (CHoG)
descriptors. We show how CHoG bitstreams can be used in

a rate-scalable manner.

The embedded representation of

CHoG bitstreams reduces transmission delay and enables
early termination on the server side. We obtain a 2-4x de-
crease in system latency using embedded CHoG descriptors
compared to transmitting uncompressed SIFT descriptors
or JPEG images in a 3G network.
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